
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 4, AUGUST 2004 681

Tradeoffs Between Low Complexity, Low Latency,
and Fairness With Deficit Round-Robin Schedulers

Luciano Lenzini, Enzo Mingozzi, and Giovanni Stea

Abstract—Deficit Round-Robin (DRR) is a scheduling algorithm
devised for providing fair queueing in the presence of variable
length packets. The main attractive feature of DRR is its sim-
plicity of implementation: in fact, it can exhibit (1) complexity,
provided that specific allocation constraints are met. However,
according to the original DRR implementation, meeting such con-
straints often implies tolerating high latency and poor fairness. In
this paper, we first derive new and exact bounds for DRR latency
and fairness. On the basis of these results, we then propose a
novel implementation technique, called Active List Queue Method
(Aliquem), which allows a remarkable gain in latency and fairness
to be achieved, while still preserving (1) complexity. We show
that DRR achieves better performance metrics than those of other
round-robin algorithms such as Pre-Order Deficit Round-Robin
and Smoothed Round-Robin. We also show by simulation that the
proposed implementation allows the average delay and the jitter
to be reduced.

Index Terms—Deficit round-robin (DRR), quality of service
(QoS), scheduling algorithms.

I. INTRODUCTION

MULTISERVICE packet networks are required to carry
traffic pertaining to different applications, such as e-mail

or file transfer, which do not require pre-specified service guar-
antees, and real-time video or telephony, which require perfor-
mance guarantees. The best-effort service model, though suit-
able for the first type of applications, is not so for applications
of the other type. Therefore, multiservice packet networks need
to enable quality of service (QoS) provisioning. A key compo-
nent for QoS enabling networks is the scheduling algorithm,
which selects the next packet to transmit, and when it should
be transmitted, on the basis of some expected performance met-
rics. During the last decade, this research area has been widely
investigated, as proved by the abundance of literature on the sub-
ject (see [2]–[18]). Various scheduling algorithms have been de-
vised, which exhibit different fairness and latency properties at
different worst-case per-packet complexities. An algorithm is
said to have worst-case per packet complexity (hereafter
complexity) if the number of operations needed to select the next
packet to be transmitted is constant with respect to the number
of active flows.

Manuscript received April 29, 2002; revised April 3, 2003; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor N. Shroff. This work
was supported by the Italian Ministero dell’Istruzione, dell’Università e della
Ricerca (MIUR) under the framework of the Project “High Quality Web
Systems.”

The authors are with the Dipartimento di Ingegneria della Informazione, Uni-
versity of Pisa, 56122 Pisa, Italy (e-mail: l.lenzini@iet.unipi.it; e.mingozzi@
iet.unipi.it; g.stea@iet.unipi.it).

Digital Object Identifier 10.1109/TNET.2004.833131

The existing work-conserving scheduling algorithms are
commonly classified as sorted-priority or frame-based. Sorted-
priority algorithms associate a timestamp with each queued
packet and transmit packets by increasing timestamp order.
On the other hand, frame-based algorithms divide time into
frames, and select which packet to transmit on a per-frame
basis. Within the frame-based class, round-robin algorithms
service the various flows cyclically, and within a round each
flow is serviced for up to a given quantum, so that the frame
length can vary up to a given maximum. Sorted-priority algo-
rithms generally exhibit better latency and fairness properties
compared to round-robin ones, but have a higher complexity,
due to the calculation of the timestamp and to the sorting
process [3]. Specifically, the task of sorting packets from
different flows has an intrinsic complexity of .1 At
high link speeds, such a complexity may limit the scalability.
Simpler algorithms requiring a constant number of operations
per packet transmission would then be desirable. Round-robin
scheduling algorithms, instead, can exhibit complexity.

Deficit Round-Robin (DRR) [7] is a scheduling algorithm de-
vised for providing fair queueing in the presence of variable
length packets. Recent research in the DiffServ area [19] pro-
poses it as a feasible solution for implementing the Expedited
Forwarding Per-hop Behavior [20], [21]. According to the im-
plementation proposed in [7], DRR exhibits complexity
provided that each flow is allocated a quantum no smaller than
its maximum packet size. As observed in [16], removing this
hypothesis would entail operating at a complexity which can be
as large as . On the other hand, in this paper we show
that meeting such a constraint may lead to poor performances if
flows with very different rate requirements are scheduled. This
is because a frame can be very large under the above constraint,
and this in turn implies poor fairness and longer delays.

The purpose of this paper is twofold. First, we propose a
novel implementation technique, called Active List Queue
Method (Aliquem), which allows DRR to operate at com-
plexity even if quanta are smaller than the maximum packet
size. More specifically, the Aliquem implementation allows
DRR to operate at complexity, provided that each flow is
allocated a quantum no smaller than its maximum packet size
scaled by a tunable parameter . By appropriately selecting
the value, it is then possible to make a tradeoff between
operational overhead and performance. We propose different
solutions for implementing Aliquem, employing different
data structures and requiring different space occupancy and
operational overhead. In addition, we present a variant of the

1It has been shown that this task can be performed atO(log logn) complexity
if coarsened timestamps are used [8].

1063-6692/04$20.00 © 2004 IEEE

682 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 4, AUGUST 2004

Aliquem technique, called Smooth Aliquem, which further
reduces the output burstiness at the same complexity.

However, in order to fully understand the performance gains
which are achieved by means of the Aliquem implementation,
a careful analysis of the DRR performance—specifically of its
latency and fairness—is required. In fact, the results related to
DRR reported in the literature only apply to the case in which
each flow is allocated a quantum no smaller than its maximum
packet size [3], [4], [7]. Therefore, as a second issue, we also
provide a comprehensive analysis of the latency and fairness
bounds of DRR, presenting new and exact results. We show that
DRR achieves better performance metrics than those of other
round-robin algorithms such as Pre-Order Deficit Round-Robin
(PDRR) [13] and Smoothed Round-Robin (SRR) [14]; we also
compare our implementation with Self-Clocked Fair Queuing
(SCFQ) [6], which is a sorted-priority algorithm. Finally, we
report simulation results showing that the Aliquem and Smooth
Aliquem techniques allow the average delay and the jitter to be
reduced.

The rest of the paper is organized as follows. Section II gives
the results related to the DRR latency and fairness. The Aliquem
implementation is described in Section III and analyzed in Sec-
tion IV, while in Section V we describe the Smooth Aliquem
DRR. We compare Aliquem DRR with previous work in Sec-
tion VI. We show simulation results in Section VII, and draw
conclusions in Section VIII.

II. DRR LATENCY AND FAIRNESS ANALYSIS

In this section we briefly recall the DRR scheduling algorithm
and the proposed implementation. We then give generalized re-
sults related to the latency and fairness properties of DRR, and
propose guidelines for selecting parameters.

A. DRR Operation and Implementation Complexity

Deficit Round-Robin is a variation of Weighted Round-Robin
(WRR) that allows flows with variable packet lengths to share
the link bandwidth fairly. Each flow is characterized by a
quantum of bits, which measures the quantity of packets that
flow should ideally transmit during a round, and by a deficit
variable . When a backlogged flow is serviced, a burst of
packets is allowed to be transmitted of an overall length not
exceeding . When a flow is not able to send a packet
in a round because the packet is too large, the number of bits
which could not be used for transmission in the current round
is saved into the flow’s deficit variable, and are therefore made
available to the same flow in the next round.

More specifically, the deficit variable is managed as follows:

• reset to zero when the flow is not backlogged;
• increased by when the flow is selected for service

during a round;
• decreased by the packet length when a packet is trans-

mitted.
Let be the maximum length of a packet for flow (mea-

sured in bits). In [7] the following inequality has been proved to
hold right after a flow has been serviced during a round:

(1)

which means that a flow’s deficit never reaches the maximum
packet length for that flow.

DRR has complexity under certain specific conditions.
Let us briefly recall the DRR implementation proposed in [7]
and discuss those conditions. A FIFO list, called the active list,
stores the references to the backlogged flows. When an idle flow
becomes backlogged, its reference is added to the tail of the list.
Cyclically, if the list is not empty, the flow which is at the head
of the list is dequeued and serviced. After it has been serviced,
if still backlogged, the flow is added to the tail of the list. It is
worth noting that

• dequeueing and enqueueing flows in a FIFO list are
operations;

• since backlogged flows are demoted to the tail of the list
after reaching the head of the list and receiving service,
the relative service order of any two backlogged flows is
preserved through the various rounds.

It has been proved in [7] that the following inequality must
hold for DRR to exhibit complexity:

(2)

Inequality (2) states that each flow’s quantum must be large
enough to contain the maximum length packet for that flow. If
some flows violate (2), a flow which is selected for transmission
(i.e., dequeued from the head of the list), though backlogged,
may not be able to transmit a packet during the current round.
Nevertheless, its deficit variable must be updated and the flow
must be queued back at the tail of the list. In a worst case, this
can happen as many consecutive times as the number of flows
violating (2). Therefore, if (2) does not hold, the number of op-
erations needed to transmit a packet in the worst case can be as
large as [16].

B. Latency Analysis

Let us assume that DRR is used to schedule packets from
flows on a link whose capacity is . Let

(3)

denote the frame length, i.e., the number of bits that should ide-
ally be transmitted during a round if all flows were backlogged.

DRR has been proved to be a latency-rate server (LR server)
[3]. An LR server is characterized by its latency, which may be
regarded as the worst-case delay experienced by the first packet
of a flow busy period, and by its rate, i.e., the guaranteed service
rate of a flow.

The following expression has been derived as the DRR la-
tency in [4]:

(4)

However, (4) was obtained under the assumption that quanta
are selected equal to the maximum packet length, i.e.,

. As a consequence, it does not apply to cases in which the
above hypothesis does not hold, as in the following example:

LENZINI et al.: TRADEOFFS BETWEEN LOW COMPLEXITY, LOW LATENCY, AND FAIRNESS WITH DEFICIT ROUND-ROBIN SCHEDULERS 683

Example: Suppose that flows with maximum packet
lengths are scheduled, and that

, . According to (4) the latency should
be

However, a packet can actually arrive at a (previously idle)
flow when every other flow in the active list has a maximum
length packet ready for transmission and a deficit value large
enough to transmit it. Therefore the delay bound for a packet
that starts a busy period for flow , is no less than ,
i.e., much higher than (4).

To the best of our knowledge, no general latency expression
for DRR has yet been derived. The following result is proved in
[26].

Theorem 1: The latency of DRR is

(5)

Note that, when , it is .
Another common figure of merit for a scheduling algorithm

is the start-up latency, defined as the upper bound on the time it
takes for the last bit of a flow’s head-of-line packet to leave the
scheduler. Such a figure of merit is less meaningful than latency,
since it does not take into account the correlation among the
delays of a sequence of packets in a flow, but it is generally easier
to compute. Moreover, computing the start-up latency allows
DRR to be compared with scheduling algorithms not included
in the LR servers category, such as SRR. We prove the following
result.

Theorem 2: The start-up latency of DRR is

(6)

Proof: A head-of-line packet of length will be serviced
after flow receives exactly service opportuni-
ties. Meanwhile, all other flows are serviced for
times as well. It has been proved in [7] that the following in-
equality bounds the service received by a backlogged flow
which is serviced times in :

(7)

Thus, the maximum service that each flow can receive
in visits is upper bounded by

. Therefore, a packet of length will leave the scheduler
after at most

(8)

have elapsed since it became the head-of-line packet for flow .
By considering that bounds the packet length for flow and
substituting the definition of frame (3) into (8), we straightfor-
wardly obtain (6).

C. Fairness Analysis

DRR has been devised as a scheduling algorithm for pro-
viding fair queueing. A scheduling algorithm is fair if its fair-
ness measure is bounded. The fairness measure was introduced
by Golestani [6], and may be seen as the maximum absolute dif-
ference between the normalized service received by two flows
over any time interval in which both are backlogged.

Let us assume that DRR schedules flows requiring rates
on a link whose capacity is , with .

Let us denote with the service received by flow
during the time interval . The fairness measure is given
by the following expression:

As a consequence of (7), if we want flows to share the link
bandwidth fairly, the ratio of any two flows’ quanta must then
match their required rate ratio. Therefore, the following set of
equalities constrains the choice of the quanta:

(9)

A fair system would thus be one for which the fraction of the
frame length for which a flow is serviced is equal to the fraction
of the link bandwidth the flow requires. Let us define

(10)

Therefore, the following equality follows from (9) and (10):

(11)

It can be easily shown that the fairness measure for DRR is

(12)

The proof is obtained by considering the following worst-case
scenario (see Lemma 2 in [7]):

• in , flow is serviced one more time than flow , say
times against ;

• , i.e., flow has the maximum
deficit at time and no deficit at time ;

• , i.e., flow has no deficit
at time and the maximum deficit at time .

By substituting the above expressions for and
in the fairness measure, and keeping into account

(10) and (11), expression (12) follows straightforwardly.

D. Parameter Selection

A known DRR problem (which is also common to other
round-robin schedulers) is that the latency and fairness depend
on the frame length. The longer the frame is, the higher the
latency and fairness are. In order for DRR to exhibit lower
latency and better fairness, the frame length should therefore
be kept as small as possible. Unfortunately, given a set of flows,

684 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 4, AUGUST 2004

it is not possible to select the frame length arbitrarily if we
want DRR to operate at complexity. In fact, inequality (2)
establishes a lower bound for each quantum in order for DRR
to operate in the region. Assuming that fairness is a key
requirement, and therefore (11) holds, in order for (2) to hold,
a frame cannot be smaller than

(13)

It is straightforward to see that if the frame length is , there
is at least one flow for which equality holds in (2). Therefore,
operating with a frame smaller than implies not operating at

complexity.
Even if the frame length is selected according to (13), it can be

very large in practical cases, as shown by the following numer-
ical example. Suppose that 20 data flows requiring 50 kb/s each
share a 10-Mb/s link with 9 video flows requiring 1 Mb/s each.
The maximum packet length is bytes for all flows.
According to our scheme, we obtain kB (240 ms at
10 Mb/s), and each video flow has a quantum of 30 kB, i.e., is
allowed to transmit a burst of 20 maximum length packets in a
round. The latency for a video flow is 262 ms, and the latency
for a data flow is 512.4 ms.

As the above example shows, when DRR is used to schedule
flows with very different rate requirements, quanta and frame
length can be very large, thus leading to high latencies for all
flows and bursty transmissions for the flows with high rates. In
the next section, we present an implementation that allows the
frame length to be reduced without the drawback of operating
at complexity.

III. THE ALIQUEM IMPLEMENTATION

The Active List Queue Method (Aliquem) is an implementa-
tion technique that allows DRR to obtain better delay and fair-
ness properties preserving the complexity. In order to dis-
tinguish between the Aliquem-based implementation of DRR
and the implementation proposed in [7] and described in the
previous section, we will call the former Aliquem DRR and
the latter Standard DRR. The rationale behind Aliquem DRR
is the following: suppose that the frame length is selected as

, . This implies that there are flows vio-
lating (2). Let flow be one of those. As already stated, if a single
FIFO active list is used to store references to the backlogged
flows, it is possible that is dequeued and enqueued several
times before its deficit variable becomes greater than the head
packet length. However, by only looking at flow ’s quantum,
deficit and head-packet length, it is possible to state in advance
how many rounds will elapse before flow actually transmits
its head packet, and we can defer updating flow ’s deficit vari-
able until that time. Specifically, let be the length of the head
packet which is at the head of flow ’s queue right after the flow
has been serviced in a round, and let be the deficit value at
that time. We can assert that the head packet will be transmitted
in the th subsequent round, where is computed as follows:

(14)

Fig. 1. Active list queue.

and the deficit right before the head packet transmission is
started will be

(15)

Note that (14) and (15) can also be applied when the packet
arrives at a previously idle flow; in this case the flow’s deficit
when the arriving packet reaches the head of the flow’s queue
is null.

Aliquem DRR avoids unnecessary enqueueing, dequeueing,
and deficit updating by taking (14) and (15) into account. Instead
of considering a single FIFO active list, we consider the data
structure shown in Fig. 1. A circular queue of elements
contains the head and tail references to different FIFO active
lists. Each active list contains references to backlogged flows.
During round , only the flows whose reference is stored in the

th active list (the current active list) are considered
for transmission, and they transmit their packets according to
the DRR pseudo-code.

When a flow has completed service, if still backlogged, it
is queued back in another active list, specifically the one that
will become the current list in the round in which the flow can
actually transmit its head packet. The correct active list where
flow must be enqueued is located as follows:

(16)

In order for this implementation to work, it is mandatory that,
for any possible values of , and , . By taking (1)
into account, this requirement translates to the following con-
straints on the quanta length:

(17)

The pseudo-code for Aliquem DRR is reported in Fig. 2. On
a packet arrival to an empty flow, the flow—whose initial deficit
is null—must be inserted into the Aliquem data structure: this
is done by applying (14) and (16). If the flow was already back-
logged, no action needs to be taken (apart from enqueueing the
incoming packet in the flow’s packet queue, of course). While
there are packets in the system, the following steps are per-
formed cyclically.

• As long as the current active list is not empty, the head flow
is dequeued: its deficit is updated according to (15), and
its packets are transmitted until either the flow is empty or
its deficit is not sufficient to transmit the next packet.

LENZINI et al.: TRADEOFFS BETWEEN LOW COMPLEXITY, LOW LATENCY, AND FAIRNESS WITH DEFICIT ROUND-ROBIN SCHEDULERS 685

Fig. 2. Pseudo-code for Aliquem DRR.

• If the flow which has just been serviced is still backlogged,
it is inserted into another active list located by applying
(14) and (16); otherwise its reference is simply discarded.

• When the current list has been emptied (i.e., all packets
which were to leave during the current round have been
transmitted), the next nonempty active list from which
to dequeue flows, i.e., the active list to be selected as
the next current list, has to be located. The function
NextNonEmptyList() is intentionally left unspec-
ified for the moment. In the following section we will
propose two different implementations for it, which yield
different worst-case and average complexity and require
different space occupancy.

IV. ALIQUEM DRR ANALYSIS

A. Operational Overhead and Space Occupancy

The space occupancy introduced by Aliquem DRR is quite
modest. The active lists pool can contain at most flow refer-
ences (the same as Standard DRR). The circular queue can be
implemented by a vector of flow references (head and tail of
an active list for each element). Thus, the only space overhead
introduced by Aliquem is .

Suppose that Aliquem DRR is servicing flows from the cur-
rent active list . It is straightforward to see that
dequeueing a flow from the current list and updating its deficit

Fig. 3. Pseudo-code for the NextNonEmptyList() function,
implementation by linear searching.

variable are operations. All flows referenced in the current
list are backlogged and, when dequeued, their deficit is large
enough to transmit (at least) the head packet. Locating the cor-
rect active list in which to enqueue a flow which has just been
serviced (or has just become backlogged) and enqueueing it are

operations as well.
When the flows in the current active list have all been

serviced, the next nonempty active list must be located, and
this task may require some overhead. However, it is easy
to see that the overhead involved in it only depends on the
number of elements in the circular queue , and does not
depend on the number of flows . Therefore, the complexity
of Aliquem DRR does not depend on the number of flows.
If no specific data structure for locating the next nonempty
list is employed, Aliquem DRR might have to perform
(i.e.,) operations per packet transmission in the worst
case, since a forward linear search of the circular queue until
a nonnull active list head reference is found must be accom-
plished. However, we observe that the average number of
operations per packet transmission is expected to be con-
siderably lower, since NextNonEmptyList() is called
once per round, and a round may include several packet trans-
missions. The pseudo-code for this implementation of the
NextNonEmptyList() function is reported in Fig. 3.

If is large, operations in a packet transmission time
could represent a burden at high link speeds. Below, we describe
two different additional data structures which allow us to reduce
the complexity of locating the next nonempty list in Aliquem
DRR.

1) Van Emde Boas Priority Queue: The Van Emde Boas pri-
ority queue (VEB-PQ) [22] is used to sort a finite set of integers

. Let and let be the subset currently main-
tained by the priority queue. Three operations are defined on
the VEB-PQ:

• insert(y,X): inserts the element y into the VEB-PQ;
• delete(y,X): extracts the element y from the

VEB-PQ;
• successor(y,X): returns the smallest element larger

than in the VEB-PQ; if is the largest element, returns
a special symbol .

The following Lemma holds [22]:
VEB-PQ Lemma: Let , let ,

and let be a subset. The operations insert(y,X),
delete(y,X), and successor(y,X) can be implemented

686 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 4, AUGUST 2004

Fig. 4. Pseudo-code for the NextNonEmptyList() function,
implementation by a VEB-PQ.

in time each. The priority queue can be initialized
in time using space.

More recent research on the VEB-PQ shows that

• it is possible to reduce the space occupancy to
without increasing the operational overhead [23];

• by employing a nonstandard (but practically imple-
mentable) memory model, the VEB-PQ operations in-
sert(y,X), delete(y,X) and successor(y,X)
can be implemented in constant time [24].

In Aliquem DRR, a VEB-PQ can be used to store the indexes
of the nonempty active lists. Thus, finding

the next nonempty active list implies executing the pseudo-code
reported in Fig. 4. The two calls to successor() in the
above procedure are due to the use of modular arithmetic in
the active lists indexing. According to the VEB-PQ Lemma,
this implementation of NextNonEmptyList() takes

operations. However, if we use a VEB-PQ, the
EnqueueFlow() procedure may require
operations too (instead of), since it has to perform an
insert() if the active list that the flow is enqueued in was
empty. Moreover, a delete() operation must be performed
whenever the current list is emptied out, before invoking the
NextNonEmptyList() function.

2) Bit Vector Tree: Many off-the-shelf processors (including
the Intel Pentium family) have machine instructions which al-
lows one to locate the least (most) significant bit set to 1 in a
word. This feature can be exploited in order to achieve a fast and
lightweight implementation of the NextNonEmptyList()
function.

Let be the word dimension in bits, and let us assume
for ease of reading. We associate one bit in a set of
words with each list in the Aliquem structure, and assume that
the bit is set if the corresponding list is nonempty. Thus, the
words can be regarded as a bit vector containing information
about the state of the lists. Locating the least significant bit set
to 1 in a given word takes one machine instruction; on the other
hand, locating the correct word in a set of can be efficiently
accomplished by considering them as leaf nodes of a X-ary tree
structure (as shown in Fig. 5). In the X-ary tree, each nonleaf
node is itself a word, whose bit, , is set if
there is at least one nonempty list in the node’s th sub-tree.

Given an Aliquem structure with active list, the X-ary tree
structure has a depth, and therefore it is possible to
locate the next nonempty list in time. As ranges
from 32 to 128 in today’s processors, the operational overhead
of such a data structure is negligible. The same can be said about
the space occupancy of a X-ary tree, in which only a single bit
is associated with each list at the leaf nodes.

As an example, consider a system with . It is possible
to manage active lists with a 2-level tree, or
active lists with a 3-level tree. The tree root can be stored directly
in a register and the overall tree occupancy (128 bytes for a
2-level tree, 4 kB for a 3-level tree) is negligible.

B. Latency

A side result of the proof process of Theorem 1 is that the la-
tency of DRR does not change if it is implemented as Aliquem
DRR. This is because Aliquem DRR just avoids polling flows
that cannot transmit a packet during a round. This means that
packets that are supposed to leave during a round in Standard
DRR will leave during the same round in Aliquem DRR (though
not necessarily in the same order, as we explain later on). There-
fore, the scenario under which the Standard DRR latency is
computed is also feasible for Aliquem DRR. Note that, in that
particular scenario, packets from the tagged flow are the last to
leave on each round. However, although the latency for Stan-
dard and Aliquem DRR is the same, it is not obtained at the
same complexity. The lowest latency for Standard DRR oper-
ating at complexity, achieved by selecting the frame length
according to (13), is

(18)

Aliquem DRR allows the frame size to be reduced by a factor
of with respect to the minimum frame length allowed by
Standard DRR at complexity. In order for Aliquem DRR
to work, inequality (17), rather than (2), must hold. Inequality
(17) allows quanta (and therefore frames) to be smaller by a
factor of with respect to (2). The minimum frame length
for Aliquem DRR is thus the following:

(19)

The lowest latency for Aliquem DRR with active lists, ob-
tained when the frame length is selected according to (19), is
therefore

Whereas in Standard DRR latency is only achievable
when operating at complexity, in Aliquem DRR latency

can be obtained at the cost of a much smaller complexity.
As far as the start-up latency is concerned, by manipulating

(6) we obtain the following lower bound for Standard DRR at
complexity:

(20)

LENZINI et al.: TRADEOFFS BETWEEN LOW COMPLEXITY, LOW LATENCY, AND FAIRNESS WITH DEFICIT ROUND-ROBIN SCHEDULERS 687

Fig. 5. Example of a 2-level bit vector tree for accessing an Aliquem structure.

The lowest start-up latency for Aliquem DRR with active
lists, obtained when the frame length is selected according to
(19), is thus

(21)

It can be easily shown that, when , , and
that the reduction in the start-up latency is nondecreasing with
. However, the amount of reduction in the start-up latency also

depends on the value of and : specifically, the smaller
is with respect to , the higher the start-up latency reduction is
for flow . In the case in which , we have
for any value of .

C. Fairness

In Standard DRR, since flows are inserted in and extracted
from a unique FIFO active list, the service sequence of any two
backlogged flows is preserved during the rounds: if flow is
serviced before flow during round and both flows are still
backlogged at round , flow will be serviced before flow

at round . Thus, if packets from both flows are supposed
to leave during a given round, flow packets will be transmitted
before flow ’s. In Aliquem DRR, due to the presence of mul-
tiple FIFO active lists, it is possible that the service sequence of
two backlogged flows can be altered from one round to another.

Let us show this with a simple example. Let us consider
flows and , which are backlogged at a given round . Let
us assume that the sequence of packets queued at both flows
is the one reported in Fig. 6(a). Both flows transmit a packet
during round , and the order of transmission of the packets is

, . In Standard DRR, this implies that, as long as both
flows are backlogged, flow is serviced before flow ; thus,
the packet transmission sequence during round (i.e., in
a round when packets from both flows are transmitted) is ,

[see Fig. 6(c)]. Consider the same scenario in Aliquem
DRR: both flows are initially queued in the th active list (as-
sume for simplicity that), and flow is queued before
flow [see Fig. 6(b)]. However, even though both flows are
constantly backlogged from round to round , the packet

Fig. 6. Inversion in the service order. (a) Packets queued at flows i and j;
(b) flow queueing in Aliquem DRR; (c) packet transmission sequence.

transmission sequence during round is the opposite, i.e.,
, .

Since in Aliquem DRR backlogged flows do not necessarily
share the same active list on every round, it is not possible to
preserve their service sequence by employing FIFO active lists.
Doing so would require using sorted lists, which have an in-
trinsic complexity of . This would lead to a higher
complexity.

Note that in Aliquem DRR the service sequence inversion
does not affect couples of flows whose quantum contains a max-
imum length packet. In fact, if and , the two
flows are always dequeued from the head of the same list (the
current list) and enqueued at the tail of the same list (the subse-
quent list); therefore, no service inversion can take place.

Let us refer to the worst-case scenario under which (12) was
derived. Due to the flow sequence inversion, during , flow

can receive service two more times than flow ; in the above
example, this happens if and are selected as the time in-
stants in which packets and start being transmitted. By
following the same procedure used for computing the standard

688 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 4, AUGUST 2004

Fig. 7. Latency gain against q.

DRR fairness measure, it is straightforward to prove that the
fairness measure of Aliquem DRR is:

if and

otherwise.

Given a frame length , Aliquem DRR can have a worse fair-
ness measure than Standard DRR. However, as already stated
in the previous subsection, Aliquem DRR allows a frame length
to be selected which is less than the minimum frame length of
Standard DRR operating at complexity by a factor of .
Therefore, by employing Aliquem DRR with , we obtain a
better fairness measure than that of Standard DRR operating at

complexity. We also observe that, if , flow sequence
inversion cannot take place, and therefore the fairness measure
of an Aliquem DRR with two active lists is the same as that of
Standard DRR operating at complexity.

D. Tradeoff Between Performance and Overhead

As seen earlier, Aliquem DRR allows us to obtain much
better performance bounds (both for latency and for fairness)
by selecting smaller frames. Smaller frames are obtained by
employing a large number of active lists, i.e., a large value,
and the value affects the operational overhead. However, with
a modest increase in the operational overhead it is possible to
achieve a significant improvement in both latency and fairness.
Let us recall the example of Section II-D: if Aliquem DRR
with is employed, the latency of a data flow is reduced
by 41% and the latency of a video flow is reduced by 73%,
as shown in Figs. 7 and 8. In addition, the fairness measure
between any two video flows is reduced by 80%.

V. SMOOTH ALIQUEM DRR

According to DRR, during a round a flow is serviced as long
as its deficit is larger than the head packet. Aliquem DRR iso-
lates the subset of flows that can actually transmit packets during
a round, but, according to the pseudo-code in Fig. 2, it services
each flow exhaustively before dequeuing the next one. There-
fore, a burst of packets of overall length at most equal to
can leave the server when a flow is serviced. Clearly, reducing
the frame length also implies reducing the flow burstiness as

Fig. 8. Fairness gain among video flows against q.

Fig. 9. Aliquem DRR and Smooth Aliquem DRR output.

a side effect, since flows are polled more frequently and for
smaller quanta. However, we can further reduce it by forcing
each flow to transmit only one packet when selected for trans-
mission. The flow is then queued back (if still backlogged) either
in the current active list (if the deficit is still larger than the new
head packet) or in a new active list, located by applying (16).
Reducing the output burstiness has several well-known advan-
tages, such as reducing the buffer requirements on the nodes of
a multinode path, and improving the average fairness and av-
erage delay. We define a slightly modified version of Aliquem
DRR, called Smooth Aliquem DRR, in which flows transmit one
packet at a time. Fig. 9 shows an example of the difference in
the output packet sequence between Aliquem DRR and Smooth
Aliquem DRR, assuming that three flows are queued in the cur-
rent list. The pseudo-code for Smooth Aliquem DRR is reported
in Fig. 10.

Since a flow might receive service more than once per round,
a flag YetServiced[i] is needed in order to distinguish
whether it is the first time that flow is going to be serviced
during the round (and in that case its deficit must be updated)
or not. This flag is set to false for a newly backlogged flow and
for a flow which is enqueued in a different active list after being
serviced, and is set to true when the flow is queued back in the
same active list.

Smooth Aliquem DRR has a similar operational overhead
as Aliquem DRR, which only depends on the value and on
the chosen implementation of the NextNonEmptyList()
function. The only space overhead added by Smooth Aliquem
DRR is the vector of flags YetServiced[]. However,
it is possible to show that the latency, start-up latency and fair-
ness measure of Smooth Aliquem DRR are the same as Aliquem
DRR.

LENZINI et al.: TRADEOFFS BETWEEN LOW COMPLEXITY, LOW LATENCY, AND FAIRNESS WITH DEFICIT ROUND-ROBIN SCHEDULERS 689

Fig. 10. Pseudo-code for Smooth Aliquem DRR.

VI. COMPARISON WITH PREVIOUS WORK

A. Comparison With Other Implementation Techniques

In this subsection we discuss the differences between our
proposal and the one described in [15] for reducing the output
burstiness of a DRR scheduler. In [15], it is observed that the
output burstiness of a DRR scheduler could be reduced by al-
lowing a flow to be serviced several times within a round, one
packet at a time. In order to do so, a DRR round is divided into
sub-frames; each sub-frame is associated with a FIFO queue,
in which references to backlogged flows are stored. Sub-frame
queues are visited orderly, and each time a flow is dequeued it
is only allowed to transmit one packet; after that, it will be en-
queued in another sub-frame queue if still backlogged. The cor-
rect sub-frame queue a backlogged flow has to be enqueued into
is located by considering the finishing timestamp of the flow’s
head-of-line packet. The data structure proposed in [15] con-
sists of two arrays of sub-frames each, associated with the
current and subsequent rounds respectively, which are cycli-
cally swapped as rounds elapse. Obviously, the number of op-
erations needed to select the next nonempty sub-frame queue
increases linearly with the array dimension. It can be observed
that—though this aspect is not dealt with in [15]—it could be
possible to reduce the operational overhead of the sub-frames
array by employing two VEB-PQs or bit vector trees (one for
the array related to the current round and another for the array
related to the subsequent round). Thus, assuming that the di-
mension of a sub-frames array and the number of active lists in

Aliquem are comparable, both implementations have the same
operational overhead; however, the sub-frames array data struc-
ture takes twice as much space as an active list queue of the same
length (either with or without employing additional data struc-
tures). It is observed in [15] that, although the proposed imple-
mentation reduces the typical DRR burstiness, it does not reduce
its performance bounds such as the latency or fairness measure;
this is probably due to the fact that the proposed implementa-
tion cannot reduce the frame length, which is in fact bounded
by (2). On the other hand, the Aliquem implementation allows
the frame length to be reduced, which actually reduces latency
and fairness measure.

B. Comparison With Other Scheduling Algorithms

In this subsection we compare Aliquem DRR with some ex-
isting scheduling algorithms for packet networks. Specifically,
we compare Aliquem DRR with Self-Clocked Fair Queueing
(SCFQ) [6], Pre-Order DRR (PDRR) [13] and Smoothed
Round-Robin (SRR) [14].

We have already observed that the DRR latency and fairness
measure are related to the frame length. If we let the frame
length go to zero, from (5) and (12) we obtain the following
DRR limit latency and limit fairness measure, respectively:

(22)

(23)

The limit latency and fairness measure of DRR are equal
to the latency and fairness measure of SCFQ. The latter is a
sorted-priority scheduling algorithm that has com-
plexity, and it has been analyzed as an LR server in [3], [4].
Thus, Aliquem DRR performance bounds are bounded from
below by those of SCFQ, to which they tend as . Re-
calling the example in Section IV-D, we obtain that, when

, latency bounds are 4.1% above the limit latency for data
flows and 22% above the limit latency for the video flows.

PDRR is aimed at emulating the Packet Generalized Pro-
cessor Sharing (PGPS) [5] by coupling a DRR module with
a priority module that manages FIFO priority queues. Each
packet which should be transmitted in the current DRR round is
instead sent to one of such priority queues, selected according
to the expected packet leaving time under PGPS. Packets are de-
queued from the priority queues and transmitted. The higher the
number of priority queues is, the closer PGPS is emulated. In
order to locate the non empty priority queue with the highest
priority, a min heap structure is employed. It is said in [13] that
PDRR exhibits worst-case per packet complexity, the
latter being the cost of a single insertion in the min heap, pro-
vided that its DRR module operates at complexity. How-
ever, a careful analysis of the PDRR pseudo code shows that this
is not the case. In fact, at the beginning of a new round, the min
heap is empty, and it is filled up by dequeueing packets from
all backlogged flows and sending each of them to the relevant
priority queue. This process has to be completed before packet
transmission is started, otherwise the PDRR ordering would be

690 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 4, AUGUST 2004

thwarted. Looping through all backlogged flows requires
iterations, of which might trigger a min heap insertion. Thus,
transmitting the first packet in a round may require as much as

operations. Clearly, the complexity of Aliquem
DRR is instead much lower. As far as latency is concerned, a
tight bound for PDRR is computed in [27]. If , the bound
obtained therein is comparable to that of Aliquem DRR.

SRR smoothens the round-robin output burstiness by al-
lowing a flow to send one maximum length packet worth of
bytes every time it is serviced. The relative differentiation of the
flows is achieved by visiting them a different number of times
during a round, according to their rate requirements, and two
visits to the same flow are spread apart as far as possible. The
space occupancy required by SRR—which is mainly due to the
data structure needed to store the sequence of visits—grows
exponentially with the number of bits employed to memorize
the flows rate requirements. If , the space occupancy is
about 200 kB. Aliquem DRR does not require such space oc-
cupancy. Although the complexity of SRR does not depend on
the number of active flows, operations must be performed
whenever a flow becomes idle or backlogged, and this may
happen many times in a round. It has been observed in [14] that
such a burden may be comparable to the complexity
of sorted-priority algorithms. On the other hand, the operational
overhead arising from searching for the next nonempty list in
Aliquem DRR (which has to be done at most once per round)
is expected to be much lower, especially if either of the two ad-
ditional data structures proposed in Section IV-A is employed.

In [14], it is claimed that the start-up latency of SRR (re-
ferred to therein as the scheduling delay) is much lower that
that of DRR. We then compare the start-up latency of both al-
gorithms. Let us suppose that a set of flows requiring rates

are scheduled on a link whose capacity is , with
. In that case, after some straightforward manipula-

tion, we obtain the following result for SRR:

(24)

where .

For Aliquem DRR, assuming as a worst case that
and , we obtain from (21)

(25)

This result, which counters the claim made in [14], can be
partially explained by considering that SRR performs a large
number of visits (up to) in a round, and on each visit
a flow’s deficit is increased by , regardless of the flow’s
actual maximum packet size .

VII. SIMULATIONS

In this section we show some of the Aliquem DRR and
Smooth Aliquem DRR properties by simulation. We have
implemented both schedulers in the ns simulator [25].

Fig. 11. Per-packet operations comparison.

A. Operational Overhead

We consider a scenario consisting of a single node with a
1-Mb/s output link shared by 40 traffic sources. All sources
transmit UDP packets with lengths uniformly distributed be-
tween 500 and 1500 bytes and are kept constantly backlogged.
Twenty traffic sources require 10 kb/s, and the remaining twenty
require 40 kb/s. The scenario is simulated for 10 seconds with
both Standard DRR and Aliquem DRR, and the number of op-
erations that are required for each packet transmission is traced.

By following the guidelines for DRR quanta allocation
outlined in Section II-D, we would obtain bytes
for the 10-kb/s sources and bytes for the 40-kb/s
sources, which yield a frame length kB. We want
to compare the number of operations per-packet transmission
of Standard DRR and Aliquem DRR if the frame length is
selected as , and quanta are allocated consequently,
so as to obtain a latency which is close to the limit latency. In
Aliquem DRR, this requires active lists. In this sim-
ulation, we use the linear search NextNonEmptyList()
implementation for Aliquem DRR and we consider as an
operation unit a flow enqueueing/dequeueing or an iteration
of the loop in NextNonEmptyList(). Clearly, this is the
most unfavorable scenario for assessing the Aliquem DRR op-
erational overhead reduction, since no additional data structure
(as a VEB-PQ or a bit vector tree) is employed. Nevertheless,
as Fig. 11 clearly shows, the number of operations per packet
transmission is much lower in Aliquem DRR. Moreover,
the average number of operations per packet transmission in
Aliquem DRR (which is 3.2) is very far from the upper bound,
which is . A thorough evaluation of the operational
overhead would also entail taking into account protocol-related
and architectural issues (such as header processing, memory
transfers, and so on), which cannot be easily covered through
ns simulation.

B. Delay

We have shown in the previous sections how it is possible
to achieve lower latencies in Aliquem DRR. In this simula-
tion we show how it is possible to reduce a flow’s average

LENZINI et al.: TRADEOFFS BETWEEN LOW COMPLEXITY, LOW LATENCY, AND FAIRNESS WITH DEFICIT ROUND-ROBIN SCHEDULERS 691

TABLE I
AVERAGE AND MAXIMUM DELAY COMPARISON

Fig. 12. Delay trace comparison.

delay by increasing the number of active lists and using the
Smooth Aliquem version. We consider a scenario consisting of
a single node with a 10-Mb/s output link shared by 40 traffic
sources. The flow we monitor in the simulation sends 500-bytes-
long UDP packets at a constant rate of 100 kb/s. The other
39 sources transmit UDP packets with lengths uniformly dis-
tributed between 100 and 1500 bytes. Nineteen traffic sources
require 100 kb/s, and the remaining 20 require 400 kb/s. The
scenario is simulated for 100 seconds with various values of
with Aliquem DRR and Smooth Aliquem DRR, and the sum
of the queueing and transmission delay for each packet of the
tagged flow is traced.

We report the average and maximum delay experienced by
the tagged flow’s packets in the various experiments in Table I.
In order to show the delay gain, we take Aliquem DRR with

(which exhibits the same behavior as Standard DRR oper-
ating at complexity) as a reference. The table shows that
an average and maximum delay reduction of about 33% can
be achieved even with as small as 5; furthermore, employing
Smooth Aliquem reduces the average delay by about 15% even
when . We observe that, as gets higher, the performance
metrics of Smooth Aliquem DRR and Aliquem DRR tend to
coincide. This is because quanta get smaller, and therefore the
probability that a flow is able to send more than one packet per
round decreases. Fig. 12 shows two delay traces, from which the

Fig. 13. Simulation scenario.

benefits introduced by Aliquem and Smooth Aliquem are also
evident.

C. Delay Variation in a Multinode Path

In this experiment we show that reducing the frame length
also helps to preserve the traffic profile of a CBR flow in a
multi node path, thus reducing the need for buffering both in
the nodes and at the receiving host. We consider a scenario con-
sisting of three scheduling nodes connected by 10-Mb/s links. A
CBR source sends 125-bytes packets with 10-ms period across
the path, thus occupying 100 kb/s. Other traffic sources (kept
in asymptotic conditions) are added as background traffic along
the path, so that the capacity of each link is fully utilized. On
each link, the background traffic consists of 21 sources sending
packets uniformly distributed between 50 and 1500 bytes. Six
sources require 0.9 Mb/s each, 5 sources require 0.6 Mb/s each,
the remaining 10 require 0.15 Mb/s each. To avoid correlation

692 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 4, AUGUST 2004

Fig. 14. Distribution of the inter-packet spacing for the CBR flows for various values of q in Aliquem DRR (left) and Smooth Aliquem DRR (right).

on the downstream nodes, background traffic sent from a node
to its downstream neighbor is not re-scheduled. Instead, each
node removes the incoming background traffic and generates
new outgoing background traffic, as shown in Fig. 13.

We simulate the network for 350 s employing both Aliquem
DRR and Smooth Aliquem DRR as schedulers. We select the
frame length according to (19), which yields kB,
and perform experiments with various values of , tracing the
inter-arrival spacing of the CBR source packets on the desti-
nation host. In an ideal fluid-flow fair queueing system, the
inter-arrival spacing would be constant (and obviously equal to
10 ms). In a packet-wise fair-queueing system, we can expect
the inter-arrival spacing to be distributed in some way around an
average value of 10 ms: in this case, the narrower the distribu-
tion is, the closer the ideal case is approximated. Fig. 14 shows
the probability distribution of the inter-packet spacing (confi-
dence intervals are not reported, since they are too small to be
visible). For small values, the distribution tends to be bimodal:
this means that the scheduling on the various nodes has turned
the original CBR traffic injected by the source into bursty on/off
traffic at the destination host. The latter will then need buffering
in order to counterbalance the jittering introduced. As grows,
the curves become narrower around the average value, thus de-
noting a smoother traffic profile at the destination. The same
behavior with respect to a variation in the parameter can be
observed both in Aliquem DRR and in Smooth Aliquem DRR.
However, in the latter the distributions for a given value are
generally narrower,2 due to the smoothing effect.

VIII. CONCLUSIONS

In this paper we have analyzed the Deficit Round-Robin
scheduling algorithm, and we have derived new and exact
bounds on its latency and fairness. Based on these results,
we have proposed an implementation technique, called the
Active Lists Queue Method (Aliquem), which allows DRR
to work with smaller frames while still preserving the
complexity. As a consequence, Aliquem DRR achieves better
latency and fairness. We have proposed several solutions for

2Note that the horizontal scale of the graph related to Smooth Aliquem DRR
is one half of the other.

implementing Aliquem DRR, employing different data struc-
tures and requiring different space occupancy and operational
overhead. We have also presented a variation of Aliquem DRR,
called Smooth Aliquem DRR, which further reduces the output
burstiness at the same complexity. We have compared Aliquem
DRR to PDRR and SRR, showing that it either achieves better
performances with the same operational overhead or provides
comparable performances at a lower operational overhead
than either of the other two. Our simulations showed that
Aliquem DRR allows the average delay to be reduced, and it
also lessens the likelihood of bursty transmission in a multihop
environment.

REFERENCES

[1] L. Lenzini, E. Mingozzi, and G. Stea, “Aliquem: A novel DRR imple-
mentation to achieve better latency and fairness at O(1) complexity,” in
Proc. 10th Int. Workshop on Quality of Service (IWQoS), Miami Beach,
FL, May 2002, pp. 77–86.

[2] H. Zhang, “Service disciplines for guaranteed performance service in
packet-switching networks,” Proc. IEEE, vol. 83, pp. 1374–1396, Oct.
1995.

[3] D. Stiliadis and A. Varma, “Latency-rate servers: A general model
for analysis of traffic scheduling algorithms,” IEEE/ACM Trans. Net-
working, vol. 6, pp. 675–689, Oct. 1998.

[4] , “Latency-rate servers: A general model for analysis of traffic
scheduling algorithms,” Univ. California, Santa Cruz, Tech. Rep.
CRL-95-38, July 1995.

[5] A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: The single
node case,” IEEE/ACM Trans. Networking, vol. 1, pp. 344–357, June
1993.

[6] S. J. Golestani, “A self-clocked fair queueing scheme for broadband ap-
plications,” in Proc. IEEE INFOCOM, Toronto, Canada, June 1994, pp.
636–646.

[7] M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit
round-robin,” IEEE/ACM Trans. Networking, vol. 4, pp. 375–385, June
1996.

[8] S. Suri, G. Varghese, and G. Chandranmenon, “Leap forward vir-
tual clock: A new fair queueing scheme with guaranteed delay and
throughput fairness,” in Proc. IEEE INFOCOM, Kobe, Japan, Apr.
1997, pp. 557–565.

[9] P. Goyal, H. M. Vin, and H. Cheng, “Start-time fair queueing: A sched-
uling algorithm for integrated services packet switching networks,”
IEEE/ACM Trans. Networking, vol. 5, pp. 690–704, Oct. 1997.

[10] J. Bennett and H. Zhang, “Hierarchical packet fair queueing algorithms,”
IEEE/ACM Trans. Networking, vol. 5, pp. 675–689, Oct. 1997.

[11] F. Toutain, “Decoupled generalized processor sharing: A fair queuing
principle for adaptive multimedia applications,” in Proc. IEEE IN-
FOCOM, San Francisco, CA, Mar.–Apr. 1998, pp. 291–298.

LENZINI et al.: TRADEOFFS BETWEEN LOW COMPLEXITY, LOW LATENCY, AND FAIRNESS WITH DEFICIT ROUND-ROBIN SCHEDULERS 693

[12] D. Saha, S. Mukherjee, and K. Tripathi, “Carry-over round-robin: A
simple cell scheduling mechanism for ATM networks,” IEEE/ACM
Trans. Networking, vol. 6, pp. 779–796, Dec. 1998.

[13] S.-C. Tsao and Y.-D. Lin, “Pre-order deficit round-robin: A new sched-
uling algorithm for packet switched networks,” Comput. Netw., vol. 35,
pp. 287–305, Feb. 2001.

[14] G. Chuanxiong, “SRR: An O(1) time complexity packet scheduler for
flows in multi-service packet networks,” in Proc. ACM SIGCOMM, San
Diego, CA, Aug. 2001, pp. 211–222.

[15] A. Francini, F. M. Chiussi, R. T. Clancy, K. D. Drucker, and N. E.
Idirene, “Enhanced weighted round-robin schedulers for accurate
bandwidth distribution in packet networks,” Comput. Netw., vol. 37, pp.
561–578, Nov. 2001.

[16] S. S. Kanhere, H. Sethu, and A. B. Parekh, “Fair and efficient packet
scheduling using elastic round-robin,” IEEE Trans. Parallel Dist. Syst.,
vol. 13, pp. 324–336, Mar. 2002.

[17] L. Lenzini, E. Mingozzi, and G. Stea, “A unifying service discipline for
providing rate-based guaranteed and fair queueing services based on the
timed token protocol,” IEEE Trans. Computers, vol. 51, pp. 1011–1025,
Sept. 2002.

[18] , “Packet timed token service discipline: A scheduling algorithm
based on the dual-class paradigm for providing QoS in integrated ser-
vices networks,” Comput. Netw., vol. 39, pp. 363–384, July 2002.

[19] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An
architecture for differentiated services,” The Internet Society, RFC 2475,
Dec. 1998.

[20] B. Davie et al., “An expedited forwarding PHB (Per-Hop Behavior),”
The Internet Society, RFC 3246, Mar. 2002.

[21] A. Charny et al., “Supplemental information for the new definition of
the EF PHB (Expedited Forwarding Per-Hop Behavior),” The Internet
Society, RFC 3247, Mar. 2002.

[22] P. Van Emde Boas, R. Kaas, and E. Zijlstra, “Design and implementation
of an efficient priority queue,” Math. Syst. Theory, vol. 10, pp. 99–127,
1977.

[23] K. Mehlhorn, Data Structures and Algorithms I: Sorting and Searching
(EATCS Monographs on Theoretical Computer Science). New York:
Springer-Verlag, 1984.

[24] A. Brodnik, S. Carlsson, J. Karlsson, and J. I. Munro, “Worst case con-
stant time priority queue,” in Proc. 12th ACM/SIAM Symp. Discrete Al-
gorithms, Washington, DC, Jan. 2001, pp. 523–528.

[25] The Network Simulator—ns-2, http://www.isi.edu/nsnam/ns/.
[26] L. Lenzini, E. Mingozzi, and G. Stea, “Full exploitation of the Deficit

Round-Robin capabilities by efficient implementation and parameter
tuning,” Univ. of Pisa, Italy, Tech. Rep., Oct. 2003.

[27] S. S. Kanhere and H. Sethu, “On the latency bound of pre-order deficit
round-robin,” in Proc. IEEE Conf. Local Computer Networks, Tampa,
FL, Nov. 2002, pp. 508–517.

Luciano Lenzini received the degree in physics from
the University of Pisa, Italy.

Since 1994, he has been a Full Professor at
the Department of Information Engineering at the
University of Pisa. He has also worked extensively
for CNUCE, an Institute of the Italian National Re-
search Council (CNR). His current research interests
include the design and performance evaluation of
MAC protocols for wireless networks and the quality
of service provision in integrated and differentiated
services networks.

Enzo Mingozzi received the Laurea and Ph.D. de-
grees in computer systems engineering from the Uni-
versity of Pisa, Italy, in 1995 and 2000, respectively.

He is currently an Assistant Professor at the Uni-
versity of Pisa. Since 1995, he has been involved in
several national and international projects including,
among others, Eurescom P810, “Wireless ATM
access and advanced software techniques for mobile
networks architecture,” and IST Wineglass, “Wire-
less IP NEtwork as a Generic platform for Location
Aware Service Support.” He also took part in the

standardization process of the HIPERLAN/2 and HIPERACCESS protocols, in
the framework of the ETSI project BRAN. He served as the tutorial chair on the
European Wireless 2002 conference committee. His current research interests
focus on the design and analysis of MAC protocols for wireless networks, and
QoS provisioning and service integration in computer networks.

Giovanni Stea received the Laurea and the Ph.D. de-
grees in computer systems engineering from the Uni-
versity of Pisa, Italy, in 1999 and 2003, respectively.

Since December 2004, he has been a Assistant Pro-
fessor (Ricercatore) at the Department of Informa-
tion Engineering of the University of Pisa. He has
been and is involved in national and European re-
search projects. He has served as a Member of the
Technical Program Committee and Local Arrange-
ments Chairman for the European Wireless 2002 in-
ternational conference. His current research interests

include network scheduling, quality of service in multiservice networks, and
network architectures.

	toc
	Tradeoffs Between Low Complexity, Low Latency, and Fairness With
	Luciano Lenzini, Enzo Mingozzi, and Giovanni Stea
	I. I NTRODUCTION
	II. DRR L ATENCY AND F AIRNESS A NALYSIS
	A. DRR Operation and Implementation Complexity
	B. Latency Analysis
	Example: Suppose that N flows with maximum packet lengths $\ov
	Theorem 1: The latency of DRR is $$\Theta_{i}={1\over C}\left[(F
	Theorem 2: The start-up latency of DRR is $$S_{i}={1\over C}\lef
	Proof: A head-of-line packet of length L_{i} will be serviced

	C. Fairness Analysis
	D. Parameter Selection

	III. T HE A LIQUEM I MPLEMENTATION

	Fig. 1. Active list queue.
	Fig. 2. Pseudo-code for Aliquem DRR.
	IV. A LIQUEM DRR A NALYSIS
	A. Operational Overhead and Space Occupancy

	Fig. 3. Pseudo-code for the NextNonEmptyList() function, implem
	1) Van Emde Boas Priority Queue: The Van Emde Boas priority queu
	VEB-PQ Lemma:  Let $U\!\!=\!\!\{0,1,2,\ldots,L\}$, let $y\!\!\in

	Fig. 4. Pseudo-code for the NextNonEmptyList() function, implem
	2) Bit Vector Tree: Many off-the-shelf processors (including the
	B. Latency

	Fig. 5. Example of a 2-level bit vector tree for accessing an Al
	C. Fairness

	Fig. 6. Inversion in the service order. (a) Packets queued at fl
	Fig. 7. Latency gain against q .
	D. Tradeoff Between Performance and Overhead
	V. S MOOTH A LIQUEM DRR

	Fig. 8. Fairness gain among video flows against q .
	Fig. 9. Aliquem DRR and Smooth Aliquem DRR output.
	Fig. 10. Pseudo-code for Smooth Aliquem DRR.
	VI. C OMPARISON W ITH P REVIOUS W ORK
	A. Comparison With Other Implementation Techniques
	B. Comparison With Other Scheduling Algorithms

	VII. S IMULATIONS

	Fig. 11. Per-packet operations comparison.
	A. Operational Overhead
	B. Delay

	TABLE€I A VERAGE AND M AXIMUM D ELAY C OMPARISON
	Fig. 12. Delay trace comparison.
	Fig. 13. Simulation scenario.
	C. Delay Variation in a Multinode Path

	Fig. 14. Distribution of the inter-packet spacing for the CBR fl
	VIII. C ONCLUSIONS
	L. Lenzini, E. Mingozzi, and G. Stea, Aliquem: A novel DRR imple
	H. Zhang, Service disciplines for guaranteed performance service
	D. Stiliadis and A. Varma, Latency-rate servers: A general model
	A. K. Parekh and R. G. Gallager, A generalized processor sharing
	S. J. Golestani, A self-clocked fair queueing scheme for broadba
	M. Shreedhar and G. Varghese, Efficient fair queueing using defi
	S. Suri, G. Varghese, and G. Chandranmenon, Leap forward virtual
	P. Goyal, H. M. Vin, and H. Cheng, Start-time fair queueing: A s
	J. Bennett and H. Zhang, Hierarchical packet fair queueing algor
	F. Toutain, Decoupled generalized processor sharing: A fair queu
	D. Saha, S. Mukherjee, and K. Tripathi, Carry-over round-robin:
	S.-C. Tsao and Y.-D. Lin, Pre-order deficit round-robin: A new s
	G. Chuanxiong, SRR: An $O(1)$ time complexity packet scheduler f
	A. Francini, F. M. Chiussi, R. T. Clancy, K. D. Drucker, and N.
	S. S. Kanhere, H. Sethu, and A. B. Parekh, Fair and efficient pa
	L. Lenzini, E. Mingozzi, and G. Stea, A unifying service discipl
	S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss
	B. Davie et al., An expedited forwarding PHB (Per-Hop Behavior),
	A. Charny et al., Supplemental information for the new definitio
	P. Van Emde Boas, R. Kaas, and E. Zijlstra, Design and implement
	K. Mehlhorn, Data Structures and Algorithms I: Sorting and Searc
	A. Brodnik, S. Carlsson, J. Karlsson, and J. I. Munro, Worst cas

	The Network Simulator ns-2, http://www.isi.edu/nsnam/ns/ .
	L. Lenzini, E. Mingozzi, and G. Stea, Full exploitation of the D
	S. S. Kanhere and H. Sethu, On the latency bound of pre-order de

