
Noname manuscript No.
(will be inserted by the editor)

Ghost : Voronoi-Based Tracking in Sparse Wireless
Networks using Virtual Nodes

Francisco Garcia · Javier Gomez · Marco A. Gonzalez ·
Miguel Lopez-Guerrero · Victor Rangel

the date of receipt and acceptance should be inserted later

Abstract Conventional tracking techniques for wire-

less networks locate a target by using at least three non-

collinear tracker nodes. However, having such a high

density of trackers over the monitored area is not al-

ways possible. This paper presents Ghost, a new track-

ing method based on Voronoi tessellations able to track

a target by using less than three tracker nodes in wire-

less networks. In Ghost, different locations of the tar-

get create different Voronoi diagrams of the monitored

area by placing virtual nodes around tracker nodes.

These diagrams are used to estimate the current lo-

cation of the target by intersecting the previous and

current Voronoi diagrams. The target’s route is con-

structed by systematically searching the most likely es-

timated target’s locations over time. Simulation results

validate that the proposed method has better tracking

accuracy compared with existing proposals. Moreover,

our approach is not tied to a specific technology, thus it

can be applied in different platforms (e.g., WLAN and

WSN).

Keywords Tracking · Voronoi tessellation · Sparse

Wireless Networks

Francisco Garcia (B) · Marco A. Gonzalez
Department of Computer Sciences, IIMAS,

National Autonomous University of Mexico, Mexico City 04510.

E-mail: {lgarciaj,marco}@uxmcc2.iimas.unam.mx

Javier Gomez · Victor Rangel
Department of Telecommunications Engineering,
National Autonomous University of Mexico, Mexico City 04510.
E-mail: {javierg, victor}@fi-b.unam.mx

Miguel Lopez-Guerrero
Department of Electrical Engineering,

Metropolitan Autonomous University, Iztapalapa Mexico City

09340.
E-mail: milo@xanum.uam.mx

1 Introduction

Tracking systems in wireless networks are usually com-

posed by a set of scattered fixed nodes in the moni-

tored area that are able to estimate the target’s route

over time. Estimating a target’s route in wireless net-

works is a nontrivial task due to the presence of sev-

eral factors in the monitored area that make network

conditions change frequently such as: obstacles, signal

interference, irregular areas and power outages. These

factors may also cause changes in network topology and

may cause loss of connectivity in some areas. On the

other hand, tracking systems typically use trilateration

methods by using three or more non-collinear nodes to

locate a transmitting target [1,2]. The problem with

this method is that not all network infrastructures can

guarantee the presence of three tracker nodes every-

where in the network. For instance, in home, hotspot

and university networks, having connectivity by a sin-

gle Access Point (AP) is considered satisfactory. We

consider that having less than three tracking nodes de-

tecting the presence of a moving node is a common

situation.

Over the past years, various proposals focused on

increasing tracking accuracy and energy efficiency [3]

[4]. However, less attention has been paid in scenarios

where less than three fixed tracking nodes are avail-

able to estimate the target’s location/route. To over-

come this limitation we propose Ghost, a new tracking

method based on Voronoi tessellations [5] able to track

a target by less than three tracker nodes in wireless

networks. Ghost is composed by three main elements:

– A target node. It is a mobile node that has a wireless

transceiver.

– A tracker node. It is a fixed wireless node within the

monitored area that has the abilities of sensing and

2

Estimated location
of the target

Tracker nodes
Target node
Virtual nodes

(a) Voronoi diagram at time t− 1

Estimated location
of the target

Tracker nodes
Target node
Virtual nodes

(b) Voronoi diagram at time t

Estimated location
of the target

Tracker nodes
Maximum transmission
radius of the tracker

(c) Intersection between the previous and current chosen polygons

Fig. 1 Ghost Operation: (a) Ghost selects the most probable polygon where the target node is located at time t−1 (see polygon filled
in gray color). (b) When a new detection is obtained at time t, Ghost selects again the most probable polygon where the target node

is located. (c) Ghost intersects the previous and current selected polygons in order to create a smaller polygon enclosing the target’s

location

computing the distance between the tracker and the

target node [6].

– A sink node. It is a processing center that collects

information from several tracker nodes and is able

to compute the target’s route using the Ghost algo-

rithm.

In Ghost, locating a target node involves three phases.

First, tracker nodes estimate how far from the target

node they are and report the estimated distance to

the sink node. Second, the sink node divides the mon-

itored area into small regions by using a Voronoi tes-

sellation algorithm [5] that takes into account two sets

of points. The first set is composed by tracker nodes

in the monitored area given by their cartesian coordi-

nates, see Figures 1(a) and 1(b). The second set is com-

posed by virtual nodes. Virtual nodes are placed along

a circle centered on each tracker node having a radius

equal to: (i) the estimated distance reported to the sink

node by trackers detecting the target node (see Figures

1(a) and 1(b)), (ii) the maximum transmission range

for trackers not detecting the target node. By placing

virtual nodes around each tracker node, Ghost can cre-

ate different Voronoi diagrams for each new location of

the target node. Moreover, by increasing the number

of virtual nodes, Ghost can narrow down the location

of the target node into a smaller Voronoi region (i.e.,

convex polygon) due to the fact that the number of

Voronoi regions increases linearly with the number of

virtual nodes [5]. Third and finally, Ghost utilizes the

current Voronoi diagram to select the most probable

polygon(s) where the target node is located by using a
point location algorithm [5,7].

Since Voronoi diagrams of the monitored area change

while the target node moves (see Figures 1(a) and 1(b)),

Ghost estimates the target’s route by intersecting the

current polygon(s) chosen by point location algorithm

at time t with selected polygon(s) computed at time

t − 1. The result of each intersection (if it exists) is a

smaller polygon(s) enclosing the likely location of the

target node, see Figure 1(c). These polygons are used

to built a graph G where the center of each polygon is

used as a vertex of the target’s route (i.e., the estimated

location of the target node).

The main contribution of this paper is that whereas

most tracking proposals require continuous coverage by

three or more tracker nodes to operate properly, we

propose a technique able to track a target node by two

or even one tracker node. In this way, our approach

is more feasible to implement given that it considers

more realistic scenarios where only one or two trackers

3

detect the target node; we named these scenarios as

{one,two}-coverage detection. Moreover, we introduce

a new technique to narrow down the area where the

target node is located by placing virtual nodes around

real trackers.

The rest of this paper is organized as follows. In

Section 2, we present previous works related to local-

ization and tracking for wireless networks. In Section

3, we present the assumptions and computational algo-

rithms used by Ghost. Section 4 defines the concept of

maximum speed circle (MSC) that provides additional

information for cases when only one or two trackers de-

tect the target node. In Section 5, we present a quanti-

tative evaluation of Ghost in a network simulator writ-

ten in Python language and we compare our approach

with existing tracking techniques. Finally, in Section 6,

we present our final remarks.

2 Related work

Tracking a target is typically based on localization ap-

proaches that fall into two categories: range-based ap-

proaches and range-free approaches. Range-based ap-

proaches use various techniques to estimate the location

of a target such as: Time of Arrival (ToA) [8], Time

Difference of Arrival (TDoA) [9,10], Angle of Arrival

(AoA) [11] and Received Signal Strength (RSS) [12–14].

Numerous range-based approaches use a trilateration

technique to enhance the accuracy of target’s location.

For instance, in [1], the authors proposed a trilatera-

tion approach to decrease location errors by applying

Kalman filtering techniques over RSSI signals from a
WLAN infrastructure. In [2], the authors proposed a

trilateration approach to locate APs around a neigh-

borhood by mounting a steerable directional antenna

on a set of vehicles driving around the neighborhood.

Range-free schemes, on the other hand, are based on

proximity and connectivity schemes. In [4], the loca-

tions of wireless sensor nodes are found by extracting

relative location information from different nodes at dif-

ferent times in order to reconstruct a two-dimensional

map of the monitored area. In [15], the authors pro-

posed a localization technique by using a real-valued

hop-count instead of a traditional integer-valued hop-

count in order to improve the multidimensional scaling

method (MDS). APIT algorithm [16], locates wireless

sensor nodes by dividing the monitored area into trian-

gular regions in which a sensor node resides. Depend-

ing on whether the node is inside or outside the trian-

gle formed by three anchors, this algorithm can narrow

down the area where a node is located. For more in-

formation on localization approaches the readers is re-

ferred to [17] where the authors presented a through

survey.

Once the position of the target can be estimated

over time, the next challenge is to estimate the trajec-

tory of a target node as it roams in the monitored area.

Most tracking approaches based their operation on pre-

dictive probabilistic schemes using Kalman filters [18]

[19] [20]. For instance, in [20], the authors applied a

Kalman filter to a set of ToA measurements to smooth

out the estimated target’s route.

Nowadays computational geometry emerged with

new algorithmic techniques that improve and simplify

many of the previous approaches. For example, in [21],

the authors proposed a human tracking system for in-

door environments by placing sparse infrared and ul-

trasound sensors. This algorithm can distinguish the

identity and location of a person by using learning tech-

niques on human motion and Voronoi graphs. A track-

ing algorithm based on a face routing technique is pro-

posed in [3], where the authors used two types of sen-

sors named monitor and backup. This algorithm detects

target’s movements by selecting the most likely moni-

tor sensor associated to a face region in order to form

a linked list of monitor and backup sensors as a route

for the target node. In [22], the authors proposed the

first tracking framework based on a polygonal spatial

neighborhood by partitioning the monitored area into

polygonal regions using planar graph algorithms. The

main idea of this framework is to select the most prob-

able polygonal edges the target node is crossing.

In summary, although tracking a target is extremely

difficult to carry out even under simple scenarios, previ-

ous proposals do not consider the case where less than

three fixed tracking nodes detect the presence of the

target node. To the best of our knowledge, the only

work dealing with this problem is [23], where the au-

thors proposed two algorithms based on predictive in-

formation obtained from a Kalman filter. The first al-

gorithm proposed in [23] is called predictive location

tracking (PLT), which uses the predictive information

obtained by a Kalman filter to provide signals from

missing base stations (BS) in order to let trilateration

techniques work properly. The second algorithm called

geometric-assisted PLT (GPLT) adjusts the location of

missing BSs by using geometric dilution of precision

metric (GDOP). Because the two methods reported in

[23] represent the closest approaches to our work, we

compare their performance with Ghost in Section 5.

3 Ghost System Model

We consider a set of N tracker nodes placed randomly

on a two dimensional rectangular space with unique

4

identifiers. For each tracker node located at point p

(i.e., (x,y)), we represent the maximum transmission

range as a unit disk graph (UDG) Cu(p,Rc) centered

at point p having a unit radius Rc. We assume that

transmission range is uniform and has constant radius.

A tracker node can detect a target node if and only if

the target node is within the tracker’s UDG coverage.

We modeled the estimated route of the target node as

a directed graph G(V,E), where the center of a cho-

sen polygon represents a vertex v ∈ V . Two different

vertices share a common edge e(u, v) ∈ E if and only if

vertex u is chosen by Ghost at time t−1 and v is chosen

at time t. We assume that each tracker node knows its

own location (e.g., by means of GPS [24,25] or other

localization method [15–17]) and this location is sent

to the sink node.

3.1 Euclidean space division

In Ghost, whenever the target node is detected by at

least one tracker node, Ghost places a circle centered

on each tracker having a radius equal to: i) the Eu-

clidean distance between a tracker node and the target

node for trackers detecting the target node. ii) the max-

imum transmission range (Rc) for trackers not detect-

ing the target node. These circles are divided into m

equal arcs, where two arcs share a point called virtual

node as shown in Figures 1(a) and 1(b). These virtual

and tracker nodes are used as input to the Voronoi al-

gorithm in order to divide the Euclidean space of the
monitored area into smaller regions. The Voronoi algo-

rithm creates m × N + N convex polygons, where N

is the number of tracker nodes (i.e., real nodes in the

monitored area) and m is the number of virtual nodes

per tracker node. In other words, each tracker node and

each virtual node in the monitored area has an associ-

ated convex polygon. The time complexity cost of the

Voronoi tessellation algorithm is O(n log n) [5], where

n is equal to m × N + N . It is important to mention

that the number of virtual nodes creates a tracking ac-

curacy and time complexity cost trade-off that will be

discussed in Section 5.

In Ghost, tracking a target involves three main cases

named {three,two,one}-coverage detection, which are

described in the following subsections. We present the

operation of Ghost without considering distance esti-

mation errors and we assume that the Euclidean space

is divided by the sink node using the Voronoi algorithm

[5,21,26]. Later, we will introduce an error model in the

simulation section.

3.2 Three-coverage detection

Ghost uses a trilateration technique [1] whenever the

target is detected by three or more tracker nodes. This

technique returns the location of the target node as

point p. This point strictly lies within a polygon P in

the monitored area. Ghost uses point location algorithm

[5][7] to find polygon P. There are several point loca-

tion algorithms, but Ghost uses slab decomposition [5]

that works as follows: the current polygonal subdivision

of the monitored area (given by the current Voronoi di-

agram) is partitioned by drawing vertical lines through

each vertex. Two consecutive vertical lines form a slab

region in which the x-coordinate of each vertex is sorted

in an array. The slab decomposition algorithm uses bi-

nary search in O(log n) time to find the x-coordinate of

point p. A similar process is used for the y-coordinate.

Then, the x and y coordinates of point p are linked to a

unique polygon P within the polygonal subdivision. In

a real scenario; however, the estimated location of the

target node may be different to its real location due to

distance estimation errors. Therefore, Ghost uses the

center of the chosen polygon P as the most appropriate

estimated location of the target node.

In cases when the target node is located by three

trackers at consecutive times, the target’s route is con-

structed as follows: let P and Q be two polygons cho-

sen by Ghost at time t and time t − 1, respectively.

Let Z be the convex polygon resulting by intersecting

the polygons P and Q. Ghost constructs target’s route

by linking the center of polygon Q with the center of

polygon Z, and the center of polygon Z with the cen-

ter of polygon P (i.e., Ghost links vQ → vZ → vP). In

case polygon Z is ∅ (i.e., no intersection occurs between
polygons P and Q), Ghost links the center of polygon

P with the center of polygon Q (i.e., vQ → vP). Ghost

computes polygon intersection in O(m + n) time [27],

where m and n are the vertices of polygons Q and P,

respectively.

All locations of the target node obtained by at least

three tracker nodes are called hook points. These points

might be used as anchor points in order to reduce the

uncertainty of possible locations of the target node when

less than three tracker nodes detect the target node, as

it is shown in the following subsections.

The operation of Ghost in pseudo code for a three-

coverage detection case is shown in Algorithm 1.

3.3 Two-coverage detection

Figure 2(a) shows the case when only two tracker nodes

(v1, v2) detect the target node, resulting in an overlap-

ping region created by intersecting the coverage area

5

Algorithm 1 Three-coverage detection.
Require: Define m (number of virtual nodes per tracker).

1: if a target node is detected by at least three tracker nodes

then
2: Send the estimated distances to the sink node.

3: Compute Voronoi diagram of the monitored area.

4: Select polygon P where the target node is located.
5: Link the center of polygon P (i.e., vP) with graph G.

6: Concatenate vP to the set of hook points.
7: end if

8: if an intersection takes place between polygons Q and P
then

9: Compute polygon Z.

10: Link vQ → vZ → vP .

11: else
12: Link vQ → vP .

13: end if

v1 v2

l1

l2
Tracker node

Target node

(a)

v1 v2 v4

v3

l2

l1

Tracker node

Target node

Maximum transmission range
Communication range

(b)

Fig. 2 Two possible locations of the target in two-coverage de-
tection

of each tracking node. This intersection generates two

possible locations of the target node (i.e., l1 and l2).

One of these locations is the real location of the target

node and the other is called the mirrored location.

The mirrored location of the target can be discarded

in some special situations. We illustrate this case in

Figure 2(b), where tracker nodes v1 and v2 detect the

v1

Tracker node

Possible locations of the target

Target node

Fig. 3 One-coverage detection

presence of the target node and send their estimated

distances to the sink node. The sink node can elimi-

nate the mirrored location of the target node if and

only if the mirrored location lies within the coverage

area of the nearest neighbors (e.g., v3 and v4 in Figure

2(b)) to the two-coverage detection, since these neigh-

bors do not detect the presence of the target node. In

the example of Figure 2(b), the real location of the tar-

get is l2, while l1 is the mirrored location. Location l1
lies within v3’s coverage area, thus it can be discarded

by the sink node since node v3 does not detect the tar-

get node. In the same example, however, if the mirrored

location lies in the shadowed region (see Figure 2(b)),

it is not possible to discard the mirrored location since

this location lies outside v3 and v4 coverage area. In

Section 4 we will use the concept of maximum speed

circle (MSC) to discard the mirrored location in cases

when the previous method does not apply.

3.4 One-coverage detection

In sparse networks, one-coverage detection is a common

situation resulting in an infinite number of possible lo-

cations of the target node around the tracker node, see

Figure 3 where a target node is detected by one tracker

node only. Ghost overcomes this drawback by placing

virtual nodes around the tracker node detecting the tar-

get. Figure 4(a) shows a Voronoi diagram formed by

eight virtual nodes and one tracker node. As we can

see in this figure, using the center of the chosen poly-

gons (i.e., polygons filled in gray) as likely location of

the target might result in a large location error. This

occurs because some of these polygons may have un-

bounded edge(s). To solve this problem, Ghost limits

the size of each chosen polygon in one-coverage detec-

tion by intersecting computed polygons at time t with

computed polygons at time t−1. Figure 4(b) illustrates

the result of this process. Note that we use virtual nodes

6

Estimated location
of the target
Tracker node
Target node
Virtual nodes

(a) Voronoi diagram formed by eight virtual nodes and one tracker

node

Estimated location
of the target
Tracker node
Target node

Previous virtual nodes

(b) Donut constructed by intersecting polygons at time t− 1 with

polygons at time t

Fig. 4 One-coverage detection using virtual nodes

computed at time t − 1 to compute Voronoi diagram

at time t. This process constructs a set of polygons in

which each polygon (filled in gray) is bounded by four

edges, as shown in Figure 4(b). We called this set of

polygons a donut.

4 Maximum Speed Circle

This section introduces the concept of maximum speed

circle (MSC), which is used to provide additional infor-

mation when a target node is located within {one,two}-
coverage detection. We define the MSC as a circle con-

taining all possible locations of the target between two

consecutive target’s detections. The MSC can be seen

as a circle with zero radius located at the center of pre-

vious selected polygon, increasing its radius at a cer-
tain speed until a new detection is obtained. For cases

where the speed is unknown but bounded in the interval

[0, Vmax], the MSC increases its radius at a maximum

target’s speed. All points inside the MSC are possible

locations of the target node because it can move freely

between two consecutive detections (see the gray area

in Figure 5(a)). In Ghost, we also consider the case

when target’s speed is known or it can be estimated

(Vknown). In this case, only points in the perimeter of

MSC are valid locations of the target node as long as

the target node does not change its trajectory in the

interval [t− 1, t], as shown in Figure 5(b).

4.1 Two-coverage detection using MSC

MSC can be used to discard the mirrored location of the

target node in a two-coverage detection as follows: the

MSC is initially located at the last known location of

the target (e.g., hook point or closest known location(s)

(a) (b)

Tracker node
Possible locations of the target

Tracker node
Possible locations of the target

[Vmin, Vmax] Vknown

Fig. 5 Maximum Speed Circle Scope

before entering the two-coverage detection) with radius

equal to zero. Then, the MSC increases its radius given

the speed of the target node (e.g., Vmax or Vknown)

until a new detection is obtained. Ghost can discard the

mirrored location if and only if the mirrored location

falls outside the MSC. To illustrate this, Figure 6 shows

the last hook point of the target node (shown as �) and

the overlapping region created by two tracking nodes

(v1 and v2). In this example, location l2 lies outside

the MSC, thus it can be discarded. Note that the last

hook point necessarily was computed at time t−1. If no

hook point or known locations exist, then Ghost cannot

discard the mirrored location of the target, because no

MSC can be placed at any previous known location.

Target’s route within two-coverage detection is built

by connecting the center of the current MSC with the

center of the polygon enclosing the chosen target’s lo-

cation (see Figure 7(a)). In case the mirrored location

cannot be discarded (i.e., both, real and mirrored loca-

tion are inside the current MSC), Ghost links the cen-

ter of the current MSC with the center of the polygon

enclosing the real and mirrored locations (see Figure

7(b)). Then, a new MSC with radius equal to zero is

7

Two possible locations of the target

MSC

v1 v2

l1

l2

Tracker node

Hook point

Fig. 6 Two tracker nodes using MSC

MSC

v1 v2

l1

l2

(a)

MSC

l1

l2
v1

v2

(b)

Two possible locations of the target

Center of the polygon

Tracker node

Hook point

Fig. 7 Building target’s route in two-coverage detection using

MSC

placed at the center of each chosen polygon (i.e., the

new hook point) in order to repeat the process until

the target node leaves the two-coverage detection.

In cases where the target node is located by two

trackers at consecutive times, the target’s route is con-

structed as follows: let P and Q be two polygons chosen

by Ghost at time t and time t−1, respectively. Let Z be

the convex polygon obtained by intersecting polygons

P and Q. Ghost constructs target’s route by linking the

center of polygon Q with the center of polygon Z, and

the center of polygon Z with the center of polygon P
(i.e., Ghost links vQ → vZ → vP). In case polygon Z is

∅, Ghost links the center of polygon P with the center

of polygon Q (i.e., vQ → vP).

The operation of Ghost in pseudo code for a two-

coverage detection is shown in Algorithm 2.

Algorithm 2 Two-coverage detection.
Require: Define m (number of virtual nodes per tracker).

1: if a target node is detected by two tracker nodes then

2: Send the estimated distances to the sink node.
3: Compute Voronoi diagram of the monitored area.

4: if mirrored location is discarded by the current MSC then

5: Select polygon P where the target node is located.
6: Link the center of the current MSC to the center of

polygon P.
7: Place a new MSC at the center of the polygon P with

radius equal to zero.

8: else
9: Select the two polygons where the target node is located

(i.e., real and mirrored location).

10: Link the center of the current MSC to the center of the
two chosen polygons.

11: Place a new MSC at the center of each chosen polygon

(i.e., vreal and vmirrored) with radius equal to zero.
12: end if

13: end if

14: Go to 1 until the target node leaves the two-coverage detec-
tion.

v0

v1 v2

Target Node

Center of polygon

Root point

MSC

Fig. 8 Building graph G within one coverage detection

4.2 One-coverage detection using MSC

Now let us explain how Ghost uses MSC to construct

the target’s route in one-coverage detection. For in-

stance, consider the last location of the target is known

before entering the one-coverage detection (e.g., hook

point). This point represents the root point in one-

coverage detection where a MSC with zero radius is

located. Then, the MSC’s radius increases until a new

detection is obtained. This detection necessarily lies

into one-coverage detection where a new donut is con-

structed by using virtual nodes at time t and virtual

nodes at time t − 1. In case no virtual nodes at time

t−1 are available, Ghost computes virtual nodes using a

circle centered on the tracker node having a radius equal

to the Euclidean distance between the tracker node and

the hook point. To illustrate this, Figure 8 shows the

8

Selected polygons
by MSCs

Tracker node
Target's trajectory

Virtual nodes
Root point

(a) Donut at time t

Selected polygons
by MSCs

Tracker node
Target's trajectory

Virtual nodes
Root point

(b) Donut at time t+∆t

Selected polygons
by MSCs

Tracker node
Target's trajectory

Virtual nodes
Root point

(c) Donut at time t+ 2∆t

Fig. 9 Polygons selected by Ghost as time passes

current MSC centered at point v0 (i.e., the root point)

and the current donut. Ghost constructs target’s route

by connecting the center of the current MSC with the

center of polygons located inside the current MSC. In

this example, two edges are formed. The first edge con-

nects nodes v0 and v1, while the second edge connects

nodes v0 and v2. Then, a new MSC with radio equal to

zero is placed on nodes v1 and v2 in order to repeat the

process until the target node leaves the one-coverage

detection. Figure 9 shows this process as time passes.

It is important to mention that before construct-

ing the current donut, Ghost determines the scope of

one-coverage detection. Figure 10 shows v1’s coverage

area overlapping with two other trackers (v2 and v3).

In this figure we can see that only points around the

one-coverage detection are chosen as virtual nodes. In

order to determine the scope of one-coverage detection,

Ghost uses kd-tree algorithm [28] to find the nearest

neighbors in O(n log n) time.

The operation of Ghost in pseudo code for one-

coverage detection case is shown in Algorithm 3.

In one-coverage detection, the larger the number of

virtual nodes, the larger the number of possible paths

created while tracking a target. In order to seek an op-

timal path solution Ghost uses the backtracking algo-

Algorithm 3 One-coverage detection.
Require: Define m (number of virtual nodes per tracker).

1: if a target node is detected by one tracker node then

2: Send the estimated distance to the sink node.
3: Compute current donut.

4: Link the center of the current MSC(s) with the center of
the polygon(s) lying inside the current MSC(s).

5: Place new MSC with radio equal to zero on each selected

location.
6: end if

7: Go to 1 until the target node leaves the one-coverage detec-

tion

rithm (BT) [29]. But before we approach the optimal

path solution, it is important to explain how Ghost ends

the paths within the one-coverage detection (i.e., end-

points in graph G for one-coverage detection). Figure 11

illustrates a target node (shown as 4) near the bound-

ary of one-coverage detection. Points vj , vk, vm, vn, vl
are the center of each current MSC, respectively. Only

the maximum speed circles reaching the next known

location of the target (vz) are chosen as endpoints of

the graph. Note that vz is necessarily located outside

the one-coverage detection. In this example, points vk
and vm are chosen as endpoints of possible paths in

one-coverage detection.

9

1
2

3

Virtual nodes

v1

v2

v3

2

Real Nodes

{1, 2, 3}-coverage detection

Fig. 10 Scope of one-coverage detection

vj

vk

vm

vn

vl

vz

Tracker node

Virtual nodes

Last known location

Target location

MSC

Fig. 11 Endpoints in one-coverage detection

In the event that no hook points exist before en-

tering the one-coverage detection, Ghost can use any

previous location(s) discovered by two-coverage detec-

tion. This includes the real location, mirrored location

or both as well as a set of endpoints discovered in a

previous one-coverage detection. In case no points exist

before entering the one-coverage detection, Ghost can-

not place any MSC in order to reduce the uncertainty.

However, this is an unlikely event as Ghost eventually

will find points in a two-coverage or tree-coverage de-

tection as time passes which can be used as hook points

before entering a one-coverage detection.

Once the endpoints are obtained, Ghost seeks the

optimal path solution in one-coverage detection by us-

ing the backtracking algorithm which is a simple re-

cursive technique to optimize searches. This algorithm

seeks the best partial solution systematically by satis-

fying a constraint function in order to obtain a global

optimal solution. In Ghost, these constraints are the

set of endpoints and the number of detections during

target’s movements within the one-coverage detection.

These constraints imply that only paths whose lengths

are equal to the number of detections in one-coverage

detection are valid paths. The backtracking algorithm

allows Ghost to find: i) all paths between the root point

and all endpoints, ii) the shortest path between the root

point and a chosen endpoint, iii) a random path. Be-

cause the backtracking algorithm accounts for most of

the processing time in Ghost, we analyze the BT worst-

case running time below.

A constraint satisfaction problem (CSP) consists of

a set of variables, X = {x1, ..., xn}, where each vari-

able xi ∈ X has an associated finite domain D =

{D(x1), ..., D(xn)}, and a set of constraints C, where

each Ci is in the form of Ci = {Xi1, Xi2, ..., Xij} [30].

A solution in a constraint problem is an assignment of

a value D(xi) that satisfies one or all constraints. If no

solution exists, the CSP is inconsistent. For any partial

solution (v1, v2, ..., vi), the BT algorithm tries to assign

the next value to the next variable (v1, v2, ..., vi, vi+1).

If this partial solution satisfies the constraints Cj(i+1) ∈
C, then the BT algorithm tries to assign a new value

to the next variable. In case the partial solution is in-

consistent, then the BT algorithm tries to assign an-

other value from D(xi+1). If a value cannot be assigned,

the BT backtracks to xi and tries another value D(xi).

The search space to assign a consistent value is at most
n∑
i=0

di = dn+1−1
d−1 , where n is the number of variables

X (in Ghost this is the number of polygons selected by

MSC) and d is the size of largest domain. Therefore, the

time complexity for every assignment D(xi) is at most

O(dn). The BT searches in n vertices, thus, the total

running time for the BT algorithm is at most O(ndn).

A filtering technique can be applied to optimize the

search space in CSP. For example, when a value D(xi)

is inconsistent with the Cj(i), we can remove or prune

the search space for futures variables. In Ghost, when

a path is larger than the number of detections in one-

coverage detection, we can prune the tree to reduce the

size of current domain. In [30] the authors analyzed the

cut-set decomposition algorithm whose time complexity

cost by using a filtering technique is O(nd2).

On the other hand, it is easy to see that one-coverage

algorithm is the main algorithm in Ghost, while the

two-coverage and three-coverage algorithms are a par-

ticular case of one-coverage algorithm. Indeed, the BT

algorithm can be used in two-coverage detection to dis-

card the mirrored location(s) by seeking the optimal

path solution using the available endpoints and the

10

number of detections of the target in two-coverage de-

tection as constraints.

5 Simulation and results

In this section, we asses the location errors of our track-

ing method. First, we study tracking accuracy as a

function of the number of virtual nodes by isolating

{three,two,one}-coverage detection cases. Then, we study

tracking performance on a larger network having many

tracker nodes. Finally, in Section 5.4, we compare Ghost’s

performance versus PLT and GPLT algorithms [23].

5.1 Noise Model

As mentioned before, in {three,two,one}-coverage de-

tection, the target’s locations are associated to the cen-

ter of chosen polygons by Ghost. Thus, let us define

the mean tracking error as the average Euclidean dis-

tance between the center of the polygon enclosing the

estimated location of the target by Ghost and the real

target’s location for all points in the trace. For track-

ers detecting the presence of the target node, Ghost

estimates the distance between a tracker node and the

target node as:

ri,k = di,k + ni,k + ei,k i = 1, 2, 3, , N (1)

where ri,k denotes the estimated distance between

the ith tracker and the target node at time k. di,k is the

real Euclidean distance between the ith tracker node

and the target node at time k. ni,k is the added noise,

which is assumed to follow a Gaussian distribution with

zero mean and three meters of standard deviation. Fi-

nally, ei,k denotes the non-line-of-sight (NLOS) error

[31], which is modeled using an exponential distribu-

tion as follows.

ei,k(v) =

{
1
λi,k

exp(− v
λi,k

) v > 0

0 otherwise
(2)

where λi,k = c · τm(di,k)ερ. Parameter c is the speed

of light, τm is the median value of the RMS trans-

mission delay between the ith tracker and the target,

which is selected as 0.1µs in the simulation. ε is the

path loss exponent which is selected as 0.5. Finally, ρ

is the shadow fading factor which is a log-normal ran-

dom variable with zero mean and a standard deviation

of 4dB. Values used in this noise model were extracted

from [23].

Parameter Value

Transmission range 100m

Monitored area length 1900m

Monitored area width 1100m
Origin of coordinates left upper corner

Standard deviation of Gaussian distri-

bution

N (0,9)

Speed Interval [1 - 5]m/s

Time interval between two consecutive

detections

1s

Mobility Model RWP

Table 1 Simulation parameters

In the following subsection, we evaluated our sys-

tem by running simulations on a custom simulator writ-

ten in Python language. First, we evaluated simula-

tions for {three,two,one}-coverage detection in isola-

tion. Nodes move according to the Random Way Point

model (RWP) [32] and we ran each experiment 50 times

to get average values. The parameters used for these ex-

periments are shown in Table 1.

5.2 Experiments in isolated {three-two-one}-coverage

detection

For the three-coverage detection experiments, tracker1
is located at coordinates (558, 287), tracker2 is located

at (498, 285) and tracker3 is located at (530, 333), all co-

ordinates are in meters. Target’s trajectory uses a RWP

model whose endpoints are located in (501, 339) and

(553, 259) in meters. The trajectory is chosen within the

overlapping region created by the three tracker nodes.

We evaluate tracking errors using a different number of

virtual nodes per tracker ranging from 5 to 50 in steps

of 5. Figure 12(a) shows the mean tracking error of

isolated three-coverage detection vs. number of virtual

nodes per tracker node using the coordinates mentioned

above. This figure shows how tracking errors decrease

as the number of virtual nodes increases, which is the

result of having smaller polygonal regions enclosing the

target node’s location.

For the two-coverage detection experiments, tracker1
is located at (521, 300) and tracker2 is located at (597,

300) in meters. Target’s trajectory uses a RWP model

whose endpoints are located in (529, 356) and (588, 247)

in meters. As we mentioned before, when two trackers

detect the target, two possible paths are formed along

the target’s trajectory. We report the mean tracking er-

ror by estimating the distance between the centers of

both associated polygons with respect to the real tar-

get’s location. In these experiments no MSC was used,

thus no mirrored locations were discarded. Figure 12(b)

shows how tracking errors decrease as the number of

11

5 10 15 20 25 30 35 40 45 50
2

4

6

8

10

12

14

16

Av
g.

 tr
ac

ki
ng

 e
rro

r [
m

]

Number of virtual nodes per tracker node

(a) Average tracking error in three-coverage detection

5 10 15 20 25 30 35 40 45 50
30

31

32

33

34

35

36

37

38

39

Av
g.

 tr
ac

ki
ng

 e
rro

r [
m

]

Number of virtual nodes per tracker node

(b) Average tracking error in two-coverage detection

15 20 25 30 35 40 45 50
6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

Av
g.

 tr
ac

ki
ng

 e
rro

r [
m

]

Number of virtual nodes per tracker node

(c) Average tracking error in one-coverage detection using
Vknown

15 20 25 30 35 40 45 50
7

8

9

10

11

12

13

Number of virtual nodes per tracker node

Av
g.

 tr
ac

ki
ng

 e
rro

r [
m

]

(d) Average tracking error in one-coverage detection using speed
interval [Vmin, Vmax]

Fig. 12 Average tracking error for isolated {three,two,one}-coverage detection

virtual nodes increases in isolated two-coverage detec-

tion, which again is the result of enclosing the target

node into smaller polygons.

For one-coverage detection simulations we assume

to know both the entry point (root point) and the exit

point of graph G. Tracking errors in one-coverage de-

tection depend on the number of virtual nodes and the

knowledge of the target’s speed. For cases when target’s

speed is known, the backtracking algorithm seeks the

closest weighted edge to the target’s speed for each de-

tection along the one-coverage detection. On the other

hand, when target’s speed is unknown but bounded in

the interval [0, Vmax], the backtracking algorithm se-

lects all edges inside the current MSC(s) along the one-

coverage detection. In both cases, we compute the mean

tracking error by estimating the average Euclidean dis-

tance between the real location of the target and the

center of selected polygon(s) for every detection inside

the one-coverage detection. For these experiments, the

tracker node is located at (603, 325) in meters, and tar-

get’s speed is considered as 4m/s. Target’s trajectory

uses RWP model whose entry point is located at (523,

394) and exit point is located at (673, 404), in meters.

Figure 12(c) shows again how tracking errors decrease

as the number of virtual nodes increases in one-coverage

detection. Our simulations show that having more than

15 virtual nodes decrease tracking errors monotonically.

However, the cost of computing the optimal path in-

creases exponentially as the number of virtual nodes

increases (as we showed in Section 4.2). It is impor-

tant to mention that the cases with less than 15 virtual

nodes per tracker node are not reported in Figure 12(c)

and 12(d). This situation arises because the distance be-

tween two consecutive virtual nodes in the donut was

12

Tracker nodes
Real target's trajectory

(a) Large network using 5 virtual nodes per tracker

Tracker nodes
Real target's trajectory
Estimated target's trajectory

(b) Large network using 5 virtual nodes per tracker

Tracker nodes
Real target's trajectory

(c) Large network using 25 virtual nodes per tracker

Tracker nodes
Real target's trajectory
Estimated target's trajectory

(d) Large network using 25 virtual nodes per tracker

Fig. 13 Tracking in a large network scenario

13

5 10 15 20 25 30 35 40 45 50
7

8

9

10

11

12

13

14

15

16

Number of virtual nodes per tracker node

Av
g.

 tr
ac

ki
ng

 e
rro

r [
m

]

Fig. 14 Tracking error for large network scenario

greater than the MSC’s diameter. As a result the MSC

did not reach the center of polygons inside the donut,

thus edges in graph G could not be connected.

Figure 12(d) shows the results of our simulations

for the case when target’s speed is chosen randomly in

the interval [1, 5]m/s. In this figure, we can observe

that having less than 15 virtual nodes per tracker node

results in a disconnected graph, similar as when the tar-

get’s speed is known. We can also observe in this figure

that having more than 15 virtual nodes per tracker node

decreases tracking error monotonically.

5.3 Tracking in a large network

We also performed experiments on a large network with

36 tracking nodes located randomly in the monitored

area using the same parameters shown in Table 1. Fig-

ure 13(a) illustrates the real target’s route and com-

puted polygons by Ghost using five virtual nodes per

tracker node, while Figure 13(b) shows the real tar-

get’s trajectory (solid line) vs. computed trajectory by

Ghost (dashed line). In Figure 13(b) we can see graph

G is disconnected in some places because too few vir-

tual nodes were used (particularly in one-coverage de-

tection). Figure 13(d) shows the same network scenario

but now considering 25 virtual nodes per tracker node.

In this figure we observe that the estimated route of

the target is not disconnected, and it is similar to real

target node’s trajectory. In Figure 13(c) we can see, as

expected, that the size of chosen polygons by Ghost

are smaller compared with selected polygons in Figure

13(a). Figure 14 illustrates how tracking errors decrease

as the number of virtual nodes increases on a large net-

work scenario. It is important to mention that MSC for

{one,two}-coverage detection were used in these exper-

iments.

5.4 Ghost vs. PLT and GPLT

Because Ghost, GPLT and PLT algorithms [23] are fo-

cused in tracking a moving target by less than three

trackers (i.e., {one,two}-coverage detection). We com-

pared Ghost’s performance with GPLT and PTL al-

gorithms [23]. In [23] the authors proposed a scenario

where the number of base stations detecting the target

node changes over time. Figure 15(a) illustrates this

arrangement, where BSi denotes the ith base station

detecting the target node at specific times. We used

the same noise model parameters (N (0,100)), the same

dimensions of the monitored area, a similar target’s tra-

jectory, the same velocity model and the same trans-

mission range as proposed in [23] to compare the mean

average tracking error over time. In this experiment we

used 30 virtual nodes per tracker node because our iso-

lated simulations showed this setting provides a satis-

factory performance for most scenarios. Figure 15(b)

shows the mean tracking error vs. simulation time. In

this figure we can see Ghost outperforms GPLT and

PLT algorithms in most of the trace. This is especially

clear in the interval [78 − 129] seconds where only one

or two BSs detect the target node. The fact Ghost op-

timizes searches by using the backtracking algorithm

whose criterion function is the number of tracking de-

tections during one-coverage detection results in a smaller

set of possible paths. In contrast, PLT and GPLT al-

gorithms do not apply a criterion function to reduce

possible paths in {one,two}-coverage detection result-

ing in larger tracking errors. Moreover, as the number

of virtual nodes increases, the area per polygon nar-

rows down in Ghost, resulting in a smaller Euclidean

distance between the center of selected polygons and

the real location of the target.

6 Conclusions

In this paper, we propose a model to track a target node

on sparse wireless networks. The proposed method is

especially suited for cases when less than three tracker

nodes detect the target node. We demonstrate that even

for cases when only one tracker detects the target node,

a set of possible paths could be constructed. Simulation

results show that using dynamic Voronoi diagrams of a

monitored area enhances tracking accuracy compared

with other proposals found in the literature. Finally,

evaluation results demonstrate that tracking a target

using virtual nodes on a dynamic Voronoi framework

14

BSs

0 26 50 70 78 96 119 129 150

1

2

3

4

Time [s]

BS3

BS1

BS2

BS1

BS2

BS3

BS4

BS2

BS3

BS4

BS3

BS4

BS3

BS3

BS6

BS3

BS5

BS6

(a) Simulation time

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

100

200

300

Simulation time [s]

A
vg

. t
ra

ck
in

g
er

ro
r

[m
]

 GPLT
 PLT
 Ghost

(b) Tracking Performance

Fig. 15 Ghost vs. PLT and GPLT algorithms

enhances tracking accuracy by reducing the size of re-
gions where the target node is likely located, especially

for {one,two}-coverage detection.

References

1. N. Kumar. A weighted center of mass based trilateration ap-

proach for locating wireless devices in indoor environment.

In Proc. of the Forth ACM International Workshop on Mo-
bility Management & Wireless Access, Terromolinos, Spain,

October 2. ACM, 2006.
2. A.P. Subramanian, P. Deshpande, J. Gaojgao, and Das S.R.

Drive-by localization of roadside WiFi networks. In Proc. of
INFOCOM, pages 718–725, Apr 2008.

3. M.Z.A. Bhuiyan, G. Wang, and J. Wu. Target tracking with
monitor and backup sensors in wireless sensor networks. In

Proc. of International Conference on Computer Communica-

tions and Networks, pages 1–6, 2009.
4. Z. Zhong and T. He. MSP: Multi-sequence positioning of

wireless sensor nodes. In Proc. of International Conference
on Embedded Networked Sensor Systems, Sydney, Australia,
November 6-9, pages 15–28, 2007.

5. T. M. Chan. Point location in O(log n) time, Voronoi dia-

grams in O(n log n) time, and other transdichotomous results

in computational geometry. In Proc. of Foundations of Com-
puter Science, pages 333–344, Oct 2006.

6. P. Moravek, D. Komosny, M. Simek, M. Jelinek, D. Girbau,

and A. Lazaro. Investigation of radio channel uncertainty in

distance estimation in wireless sensor networks. Telecommu-
nication Systems, pages 1–10, 2011.

7. A.Z.B. Haji Talib, M. Chen, and P. Townsend. Three ma-

jor extensions to Kirkpatrick’s point location algorithm. In
Proc. of Computer Graphics International, pages 112–121,
Jun 1996.

8. X. Wang, Z. Wang, and B. O’Dea. A TOA-based location al-
gorithm reducing the errors due to non-line-of-sight (NLOS)

propagation. IEEE Transactions on Vehicular Technology,

52(1):112–116, Jan 2003.

9. R. Yamasaki, A. Ogino, T. Tamaki, T. Uta, N. Matsuzawa,
and T. Kato. TDOA location system for IEEE 802.11b

WLAN. In Proc. of Wireless Communications and Network-
ing Conference, IEEE, volume 4, pages 2338–2343, Mar 2005.

10. F. Gustafsson and F. Gunnarsson. Positioning using time-

difference of arrival measurements. In Proc. of the IEEE

International Conference on Acoustics, Speech, and Signal
Processing, Apr 2003.

11. D. Niculescu and Badri Nath. Ad hoc positioning system

(APS) using AOA. In Proc. of Conference of the IEEE Com-
puter and Communications. IEEE Societies, volume 3, pages

1734–1743, Mar 2003.

15

12. E. Elnahrawy, Li. Xiaoyan, and R.P. Martin. The limits of
localization using signal strength: a comparative study. In

Proc. of Sensor and Ad Hoc Communications and Networks,

First Annual IEEE Communications Society Conference on,
pages 406–414, Oct 2004.

13. T. Kitasuka, K. Hisazumi, T. Nakanishi, and A. Fukuda.
Positioning technique of wireless LAN terminals using RSSI

between terminals. In Proc. of the International Conference

on Pervasive Systems and Computing, Las Vegas, Nevada,
June 27-30, pages 47–53, 2005.

14. T. Stoyanova, F. Kerasiotis, A. S. Prayati, and G. D. Pa-
padopoulos. Evaluation of impact factors on RSS accuracy

for localization and tracking applications in sensor networks.

Telecommunication Systems, 42(3-4):235–248, 2009.

15. D. Ma, M.J. Er, B. Wang, and H. B. Lim. Range-free local-

ization based on hop-count quantization in wireless sensor
networks. Telecommunication systems, pages 1–6, Jan 2009.

16. T. He, C. Huang, B.M. Blum, J.A. Stankovic, and T. Ab-
delzaher. Range-free localization schemes in large-scale sen-

sor networks. In Proc. of Mobi-Com, 2003.

17. G. Han, H. Xu, T.Q. Duong, J. Jiang, and T. Hara. Lo-

calization algorithms of wireless sensor networks: a survey.

Telecommunication Systems, 2011.

18. I. Guvenc, C.T. Abdallah, R. Jordan, and O. Dedeoglu.

Enhancements to RSS based indoor tracking systems using
Kalman filters. In Proc. of GSPx and International Signal

Processing Conference, 2003.

19. E.L. Souza, E.F. Nakamura, and H.A.B. F. de Oliveira. On
the performance of target tracking algorithms using actual

localization systems for wireless sensor networks. In Proc.
of International Symposium o Modeling Analysis and Sim-

ulation of Wireless and Mobile Systems, Tenerife, Canary

Islands, Spain, October 26-19, pages 418–423, 2009.

20. C. Chao-Lin and F. Kai-Ten. Hybrid location estimation and

tracking system for mobile devices. In Proc. of the Vehicular
Technology Conference, IEEE 61st, volume 4, pages 2648–

2652, 2005.

21. L. Liao, D. Fox, J. Hightower, H. Kautz, and D. Schulz.
Voronoi tracking: Location estimation using sparse and noisy

sensor data. In Proc. of the IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, 2003.

22. M. Z. A. Bhuiyan, G. Wang, and J. Wu. Polygon-based
tracking framework in surveillance wireless sensor networks.
In Proc. of Parallel and Distributed Systems, pages 174–181,

2009.

23. T. Po-Hsuan, F. Kai-Ten, L. Yu-Chiun, and Chao-Lin C.

Wireless location tracking algorithms for environments with

insufficient signal sources. IEEE Transactions on Mobile
Computing, 8(12):1676–1689, 2009.

24. N. Bulusu, J. Heidemann, and D. Estrin. GPS-less low-cost
outdoor localization for very small devices. IEEE Personal
Communications, 7(5):28–34, Oct 2000.

25. D. Niculescu and B. Nath. DV based positioning in ad hoc

networks. Telecommunication Systems, 22:267–280, 2003.

26. W. Alsalih, K. Islam, Y. Nunez-Rodriguez, and H. Xiao.
Distributed Voronoi diagram computation in wireless sensor

networks. In Proc. of Annual ACM Symposium on Parallel
Algorithms and Architectures, Jun 2008.

27. C. Yang, P. Shi, W. Zao, L. Wang, X. Meng, and Wang
J. New intersection algorithm of convex polygons based on
Voronoi diagrams. In Proc. of International Symposium on

Voronoi Diagrams in Science and Engineering, pages 224–
231, Jul 2006.

28. A. Yershova and S.M. LaValle. Improving motion-planning
algorithms by efficient nearest-neighbor searching. IEEE
Transactions on Robotics, 23(1):151–157, 2007.

29. L. Hong-Bo, L. Zhan-Shan, A. Yang, and D. Hui-Ying. On
research of optimization strategy for dynamic backtracking.

In Proc. of International Conference on Machine Learning

and Cybernetics, volume 1, pages 266–271, Jul 2009.
30. R. Dechter. Enhancement schemes for constraint process-

ing: Backjumping, learning, and cutset decomposition. Sci-

encieDirect, Artificial Intelligence, 41:273–312, 1990.
31. F. Benedetto, G. Giunta, A. Toscano, and L. Vegni. Dy-

namic LOS/NLOS statistical discrimination of wireless mo-

bile channels. In Proc. of IEEE Vehicular Technology Con-
ference, pages 3071–3075, Apr 2007.

32. W. Navidi and T. Camp. Stationary distributions for the

random waypoint mobility model. IEEE Transactions on
Mobile Computing, 3(1):99–108, 2003.

