Performance evaluation of VoIP traffic over the IEEE 802.16e protocol with different modulations and codings

Abstract. Supporting as many Voice over IP (VoIP) users as possible in a BWA network using limited radio resources is a very important issue. However, performance of VoIP services is affected by several issues defined in the IEEE 802.16e protocol. In this paper we used a theoretical model and an algorithm to evaluate the performance of some of the most important VoIP codecs. Simulation results validate the theoretical model to achieve the maximum number of VoIP streams for different configurations of the IEEE 802.16e system.

Streszczenie.

Keywords: IEEE 802.16e, Mobile WiMAX, VoIP, Performance Evaluation.

I. Introduction

Supporting as many VoIP users as possible using limited radio resources is a very important issue because VoIP is expected to be widely supported by mobile wireless networks. However, performance of VoIP services on the IEEE 802.16e standard [1] is affected by signalling overhead, ranging regions and wasted symbols due to "rectangulation and quantization", among others.

Rectangulation is the process of allocating bandwidth resources in the downlink (DL) channel on a square or rectangular region of the frame structure. Quantization is the process of allocating these resources using the minimum allocation unit, denominated "quantum map". Considering Partial Usage of Sub-Channels (PUSC), a quantum map or a slot in the DL channel is one subchannel per two OFDMA (Orthogonal Frequency Division Multiple Access) symbols. A quantum map in the uplink (UL) channel is one subchannel per three OFDMA symbols. These settings seriously affect VoIP service performance because a VoIP packet allocation generally does not fit well in the DL and UL reservation space and usually multiple quantum maps are required.

Signalling overhead of MAP messages also affects VoIP services, because such overhead increases when the Base Station (BS) schedules small-sized VoIP packets. Some studies have evaluated VoIP performance taking into consideration mapping overhead [2], [3]. However, in these studies neither wasted resources in the DL channel due to quantization and rectangulation were considered nor ranging and contention signaling on the UL channel were taken into account.

A previous work presented an analytical model to evaluate VoIP performance [4]. This study takes into account the quantization and ranging regions in the DL and UL channels, respectively. However, wasted symbols due to rectangulation were not considered. The performance of some speech codecs has been evaluated in [5] and [6]. In [6] wasted symbols were considered, however they were considered as a result of variations of VoIP inter-arrival times and packet sizes. Moreover, in [5-6], the mapping overhead was not considered and the performance optimization of speech codecs based on OFDMA symbols for UL and DL channels was not approached.

For a detailed description of 1) frame format, 2) initialization and registration process, 3) bandwidth reservation process and 4) Quality of Service classes of the IEEE 802.16e protocol, we refer the readers to our previous work [7], which also includes a simply performance analysis of mobile WiMAX networks for VoIP streams considering only G.711 and G.723 speech codecs.

In this paper, we present a performance optimization of mobile WiMAX network in order to support the maximum number of VoIP streams, using most common codecs: G.711, G.729, G.728 and G.723.1. We also implemented a simulation model to analyse end to end delays and other important issues that could not be approached by the theoretical model. Several modulations and codifications were taken into account in order to evaluate the performance of different VoIP codecs using three packet encapsulations types: without Header Suppression (-HS), with Header Suppression (+HS [8-9]) and compressed Real-time Transport Protocol (+cRTP[10]).

II. Performance Analisys of VoIP Traffic

In this section, we present the performance analysis of the IEEE 802.16e MAC protocol when VoIP traffic is transmitted using a 20 MHz channel. The theoretical model we have derived for the performance analysis can also be used to study other applications. However, in this study we evaluate CBR traffic to stress the network with short VoIP packets, when the service class UGS is used. From Fig. 1, we can see that the DL subframe comprises of a Preamble, a FCH (frame control header), a DL-MAP message, a UL-MAP message and DL bursts. According to the standard [1] Preamble and FCH are constant size, but DL-MAP and UL-MAP are of variable size. Here DL bursts are also constants since they are used to transport fixed-size VoIP frames. Therefore in order to know the number of VoIP streams supported in the DL subframe (VoIPstreams_{DL}) we just need to compute the available number of OFDMA symbols at the PHY layer in the DL subframe (Av_{DL_{symbol}}), take away the overhead (FCH, DL-MAP and UL-MAP), and compute how many DL VoIP bursts fits in the last symbols, (considering the total wasted symbols, if so). Similarly, we follow the same procedure to compute the number of VoIP streams supported in the UL subframe (VoIPstreams_{UL}). We just need to compute the available number or OFDMA symbols at the PHY layer in the UL subframe (Av_{UL_{symbol}}), take away the ranging regions and computing how many UL VoIP busts fits in the last symbols (in this case there are no wasted symbols).

Finally, the maximum number of VoIP streams supported (MaxVoIPStreams) in a 20 MHz channel for the transmission of voice traffic will be the minimum of VoIPstreams_{UL} and VoIPstreams_{DL}.
a. Theoretical Model

For the modeling of the IEEE 802.16e protocol, we used the parameters given in Table 1. These parameters include the default values given by the standard [1]. As the grants (used to transmit data traffic) have to be reserved in quantum maps, the available number of OFDMA symbols (A_{OFDMA}) has to be rounded to multiples quantum maps. Hence, the available number of OFDMA symbols in the DL subframe is given by equation (1); here we have taken out one OFDMA symbol for the Preamble.

$$A_{\text{OFDMA}} = \frac{Q_{\text{symbols}} - Q_{\text{data}}}{} \quad \text{where: } Q_{\text{symbols}} \text{ - number of OFDMA symbols used in the DL subframe, } Q_{\text{data}} \text{ - quantum symbol for the DL Preamble,}$$

Table 1. MAC and PHY Layer parameters for a 20 MHz channel

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame duration</td>
<td>Frame duration</td>
<td>5ms</td>
</tr>
<tr>
<td>FCH_dch</td>
<td>FCH subchannels</td>
<td>1</td>
</tr>
<tr>
<td>FCH_smb</td>
<td>FCH symbols</td>
<td>2</td>
</tr>
<tr>
<td>FFB_dch</td>
<td>Symbols for Fast Feed Back Channel Quality Information (FFB/COI)</td>
<td>6</td>
</tr>
<tr>
<td>FFB_smb</td>
<td>Subchannels for FFB/COI.</td>
<td>1</td>
</tr>
<tr>
<td>IEsizeU</td>
<td>Ranging information element size (bytes)</td>
<td>7</td>
</tr>
<tr>
<td>MACHdrU</td>
<td>MAC header (bytes)</td>
<td>6</td>
</tr>
<tr>
<td>OFDMA_U</td>
<td>Number of OFDMA streams</td>
<td>6</td>
</tr>
<tr>
<td>Rngreq wholly</td>
<td>Symbols for ranging and BW request</td>
<td>1</td>
</tr>
<tr>
<td>Rngreq wholly</td>
<td>Symbols for ranging handoff</td>
<td>2</td>
</tr>
<tr>
<td>Rngreq wholly</td>
<td>Subchannels for ranging and BW request</td>
<td>6</td>
</tr>
<tr>
<td>Rngreq wholly</td>
<td>Subchannels for ranging handoff</td>
<td>6</td>
</tr>
<tr>
<td>Subframe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frame</td>
<td>Data Subcarriers</td>
<td>1120-1440</td>
</tr>
<tr>
<td>IEsizeU</td>
<td>Information element size (bytes)</td>
<td>32-60</td>
</tr>
<tr>
<td>MapHdrU</td>
<td>Map header (bytes)</td>
<td>7-12</td>
</tr>
<tr>
<td>Qsymbol</td>
<td>Quantum symbol size</td>
<td>3-2</td>
</tr>
<tr>
<td>RepCnt</td>
<td>Repetition count</td>
<td>1-4</td>
</tr>
<tr>
<td>Subchannel</td>
<td>Subchannels</td>
<td>70-60</td>
</tr>
<tr>
<td>Subchannel</td>
<td>Subchannels per Subchannel</td>
<td>16-24</td>
</tr>
</tbody>
</table>

According to the standard [1], A_{OFDMA} can be set to different values (denoted by “0” in Table2). For each VoIP codec, modulation and codification, we derived an algorithm that chooses the best configuration from Table 2 in order to achieve the maximum number of VoIP streams on each channel.

One of the performance problems is the "signaling overhead of control messages" (SOCM) consumed in the DL subframe, such as the FCH, DL-MAP and UL-MAP messages. The map zone size ($MapZone_{\text{OFDMA}}$) computes the number of OFDMA symbols consumed by SOCM messages as the number of OFDMA symbols increases. Thus, $MapZone_{\text{OFDMA}}$ is given by:

$$MapZone_{\text{OFDMA}} = FCH_{\text{size}} \times MapHdr_{\text{OFDMA}} + MapCnt_{\text{OFDMA}}$$

where: $MapHdr_{\text{OFDMA}}$ - length of the DL-MAP subframe, $MapCnt_{\text{OFDMA}}$ - length of the UL-MAP subframe as shown in Fig.1, FCH_{size} - length of the frame control header given by:

$$FCH_{\text{size}} = \left\lfloor \frac{Qmap_{\text{UL}} \times MapCnt_{\text{UL}}}{Qsymbol} \right\rfloor$$

where: $Qmap_{\text{UL}}$ - length of the quantum symbol in the UL subframe.

The DL-MAP subframe contains Information Elements (IEs) used by the SSS to decode their grants in the DL subframe. The DL-MAP size (Map_{DL}) depends on the number of VoIP streams (N) allocated in the DL subframe. Therefore the DL-MAP size is defined as:

$$Map_{\text{DL}} = \left(MACHdr_{\text{DL}} + MapHdr_{\text{DL}} + IEsize_{\text{DL}} \times 8 + N \times IEsize_{\text{DL}} \right) \times Qmap_{\text{DL}}$$

where: $MACHdr_{\text{DL}}$ - generic MAC header, $MapHdr_{\text{DL}}$ - DL-MAP header, $IEsize_{\text{DL}}$ - DL IE size as is shown at the top of Fig. 1.

In (3) and (5), $RepCnt_{\text{DL}}$ is used because the BS must ensure that SOCM messages for SSS operation are correctly received.

Similarly, we computed the UL-MAP size as:

$$Map_{\text{UL}} = \left(MACHdr_{\text{UL}} + MapHdr_{\text{UL}} + 3 \times IEsize_{\text{UL}} \times 8 + N \times IEsize_{\text{UL}} \times RepCnt_{\text{UL}} \right)$$

where: $MACHdr_{\text{UL}}$ - UL-MAP header, $IEsize_{\text{UL}}$ - ranging IE size, $IEsize_{\text{UL}}$ - UL IE size, $RepCnt_{\text{UL}}$ - UL repetition count.

In (6), $IEsize_{\text{UL}}$ is used by the Handoff region, the Bandwidth Requests region and the Fast Feed Back Channel Quality Information (FFB/COI) region.

Then, the number of VoIP streams supported in the DL subframe is defined by:
Both Map\textsubscript{pad} and Wstsmb\textsubscript{(N)} are wasted symbols due to a different codeword (and hence to many, matrix(N)) means the maximum N such that \(\text{Av}_{\text{max}} = \text{MapZone}_{\text{max}} = \sum_{n=1}^{N} SSVoIP_{\text{pad}} \), Map\textsubscript{pad} - Wstsmb\textsubscript{(N)} > 0. In order to compute Map\textsubscript{Zone} we need to obtain the VoIP frame size at the PHY layer (VoIP\textsubscript{frame}\textsubscript{pad}) and then apply the modulation and codification overhead factor. Thus, the DL VoIP stream size is defined as:

\[
SSVoIP_{\text{pad}} = \frac{\text{VoIP\textsubscript{frame}pad}}{M \times cc + Qmap_{cc}} + Qmap_{cc}
\]

where: \(M \) - number of bits per symbol (2 for QPSK, 4 for 16-QAM and 6 for 64-QAM), \(cc \) - convolutional coding rate (1/2, 2/3, 3/4 or 5/6).

For the performance analysis, the most common VoIP codecs were considered, such as G.711, G.723, G.726, G.728 and G.729. These are described as follows:

1) Codec G.711 [11] was considered in order to stress the IEEE 802.16e network and because this codec will be used for longer dial-up calls. G.711 is the mandatory codec according to the ITU-T H.323 conferencing standard [12], which uses Pulse Code Modulation to produce a data rate of 64 kbps at the application layer. This code creates and encapsulates an 8-byte VoIP frame every 10 ms.
2) According to the ITU, IETF and the VoIP Forum, G.723.1 [G.723 from now on] [13] is the preferred speech codec for Internet telephony applications. This codec generates a data rate of 5.3 kbps at the application layer, where a 20-byte VoIP frame is generated every 30 ms.
3) Codec G.726 uses Adaptive Differential Pulse Code Modulation (ADPCM) scheme according to the ITU G.726 recommendation [14]. This codec generates a data rate of 32 kbps at the application layer, where a 40-byte VoIP frame is generated every 10 ms.
4) According ITU 6.728 recommendation [15], codec G.728 uses Low-Delay Code Excited Linear Prediction (LD-CELP) and generates a data rate of 16 kbps at the application layer and a 40-bit VoIP frame is generated every 2.5 ms.
5) Codec G.729 uses Conjugate-Structure Algebraic-Code-Excited Linear Prediction (CS-ACELP) speech compression algorithm, approved by ITU [16]. It is mostly used in VoIP applications where bandwidth must be conserved. It generates a 10-byte VoIP frame every 10 ms, producing a data rate of 8 kbps.

As an example to obtain the SSVoIP_{DL}, Fig. 3a illustrates the encapsulation process for a G.711 codec using two different modulations QPSK1/2 (\(M=2, cc=1/2 \)) and 64-QAM/3/4 (\(M=6, cc=3/4 \)).

![Fig. 2. VoIP encapsulation for a G.711 codec, with and without header suppression](image)

According to (7) and (8), header suppression (HS) is possible, so we can disregard fixed fields of the RTP, UDP and IP headers. This results in a reduction from 40-bytes to 14-bytes of header as shown in Fig. 3b
d. This reduction of RTP+UDP+IP headers (VoIP frame overhead), will increase system performance as indicated in the following sections.

As we mentioned, padding symbols are wasted by the MapZone\textsubscript{max}, this is because the map zone has to fit the symbols from the last subchannels to form a rectangular region, as it is shown in Fig. 1. Thus wasted padding symbols by the MapZone\textsubscript{max} are defined as:

\[
M_{pad} = \frac{\text{MapZone}_{\text{max}}}{Qmap_{cc} * Data_{\text{av}} + Wstsmb_{\text{av}}} - \text{MapZone}_{\text{max}}
\]

Table 3. Codec characteristics

<table>
<thead>
<tr>
<th>Codec</th>
<th>Bit rate</th>
<th>Codec inter-arrival time (ms)</th>
<th>VoIP frame size (application layer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.711</td>
<td>64 Kbps</td>
<td>10</td>
<td>80 bytes</td>
</tr>
<tr>
<td>G.723</td>
<td>5.3 Kbps</td>
<td>30</td>
<td>20 bytes</td>
</tr>
<tr>
<td>G.726</td>
<td>32 Kbps</td>
<td>10</td>
<td>40 bytes</td>
</tr>
<tr>
<td>G.728</td>
<td>16 Kbps</td>
<td>2.5</td>
<td>40 bytes (5 bytes)</td>
</tr>
<tr>
<td>G.729</td>
<td>8 Kbps</td>
<td>10</td>
<td>10 bytes</td>
</tr>
</tbody>
</table>

Equation 8

\[
SSVoIP_{\text{pad}} = \frac{\text{VoIP\textsubscript{frame}pad}}{M \times cc + Qmap_{cc}} + Qmap_{cc}
\]
We need to guarantee that Offset_n corresponds to a grant that was tried to be allocated at the last subchannels of the DL subframe. Hence, the grant offset wasted by the nth SSVoIP stream allocation in the DL subframe is defined by:

\[
\text{Offset}_n = \begin{cases}
\text{Offset}, & \text{if } \text{Offset}_n < \text{SSVoIP} \\
0, & \text{otherwise}
\end{cases}
\]

We also need to know the number of VoIP streams supported in the UL subframe. Thus, the available number of OFDMA symbols in the UL subframe (Avl_{UL,avail}) is computed as:

\[
\text{Avl}_{UL,\text{avail}} = \left(\frac{\text{ODFMA}_{\text{UL,avail}}}{\text{Qmap}_{UL}} \right) \times \text{Qchm}_{UL} \times \text{Data}_{UL,\text{avail}}
\]

\[
(13)
\]

where: \(\text{ODFMA}_{\text{UL,avail}}\) = number of OFDMA symbols used in the UL subframe, \(\text{Qmap}_{UL}\) = quantum symbol for the UL subframe (in OFDMA symbols), \(\text{Data}_{UL,\text{avail}}\) = data subcarriers in the UL subframe, \(\text{SbCr}_{\text{UL,avail}}\) = number of subcarriers per subchannel in the UL subframe, \(\text{Range}_{\text{UL,avail}}\) and \(\text{Range}_{\text{UL,avail}}\) are the number of symbols and subchannels used for ranging handoff, respectively. \(\text{Range}_{\text{UL,avail}}\) and \(\text{Range}_{\text{UL,avail}}\) are the number of symbols and subchannels used for ranging and bandwidth (BW) request, respectively. \(\text{FFB}_{\text{UL}}\) and \(\text{FFB}_{\text{DL}}\) are the number of symbols and subchannels used for Fast Feed Back Channel Quality Information (FFB/CQI), respectively.

Then, the number of VoIP streams supported in the UL subframe is obtained as:

\[
\text{VolP}_{\text{UL}} = \left(\frac{\text{ClnPFrame}_{\text{UL}}}{\text{Avl}_{UL,\text{avail}}} \right) \times \text{SSVoIP}_{UL}
\]

\[
(14)
\]

where: \(\text{SSVoIP}_{UL}\) = UL VoIP stream size given by:

\[
\text{SSVoIP}_{UL} = \left(\frac{\text{VolPFrame}_{\text{UL}}}{\text{M} \times \text{cc} \times \text{Qmap}_{UL}} \right) \times \text{Qmap}_{UL}
\]

\[
(15)
\]

where: \(\text{Qmap}_{UL}\) = UL Quantum MAP.

In (15) we also have applied the minimum reservation unit in the UL channel (Qmap_{UL}), which is defined by:

\[
\text{Qmap}_{UL} = \text{Qchm}_{UL} \times \text{SbCr}_{\text{UL,avail}}
\]

\[
(16)
\]

where: \(\text{Qchm}_{UL}\) = length of the quantum symbol in the UL subframe.

Finally, the maximum number of VoIP streams supported is defined as \(\min(\text{VolP}_{\text{UL,avail}}, \text{VolP}_{\text{UL,available}})\).

b. Simulation Model

In order to validate the theoretical model, we implemented a WiMAX mobile simulation model based on the OPNET MODELER package v.16. At the top level of the IEEE 802.16e network model are the network components, for example the BS, SSs and servers, as is shown in Fig. 4a. The next hierarchical level, Fig. 4b, defines the functionality of a SS in terms of components such as traffic sources, TCP/UDP, IP, MAC and PHY interfaces. The operation of each component is defined by a Finite State Machine (an example of which is shown in Fig. 4c).

The actions of a component at a particular state are defined in Proto-C code (see Fig. 4d). This approach allows modifications to be applied to the operation of the IEEE 802.16e MAC protocol and different optimizations and enhancements to be tested. The parameters used for the simulation model were the same as the theoretical model defined in Table 1.
configuration without considering HS, the maximum number of quality phone calls becomes of 144. However, when HS is employed, this number increases to 170 when a 03 frame configuration is used, resulting in an 18% increase.

Although more VoIP streams are supported, we can see a throughput reduction (8.13%); this is because considering HS the VoIP frame overhead reduction is considerable and resources consumed by the VoIP streams allocated instead of, are less than resources consumed by the VoIP frame overhead reduction. Thus reducing the throughput from 13.8 Mbps (= 144 SSs * 96 Kbps, where DL-MAP + UL-MAP = 4.1 Msmb/s) to 12.8 Mbps (= 170 SSs * 75.2 Kbps, where DL-MAP + UL-MAP = 4.9 Msmb/s). Moreover in this case, more OFDMA symbols were configured to DL subframe (03), to compensate for resources consumed by signaling overheads of MAP messages.

Fig. 6 shows the allocations of VoIP streams (bursts) in both directions, DL and UL, where the empty space could not be allocated for the transmission of VoIP traffic, since it is not possible to have fragmented VoIP frames when UGS is used and due to the rectangulation and quantization process. However most of this empty space is allocated for the transmission of more VoIP bursts when 64-QAM3/4 and HS are considered, due the fact that VoIP bursts size is reduced considerable and fits better in the unscheduled symbols.

Similarly, Fig. 5b shows the UL throughput for codec G.723, which also applies to DL direction. We can see the maximum number of VoIP phone calls is increased considerably from 228 (with -HS, 04, QPSK1/2) to 348 (with HS, 03, QPSK1/2). Here, there was an increase of 52.6% on VoIP phone calls.

However, these VoIP phone calls are performed with a medium quality, since MOS (Mean Opinion Score) = 3.6 for codec G.723, compared to MOS = 4.4 for codec G.711. Once again we can see a throughput reduction (15.6%) due VoIP frame overhead reduction. By using 64-QAM3/4, the number of VoIP phone calls can be increased from 600, (with -HS, 02) to 738 (with HS, 01). Here the increase was of 23% on VoIP phone calls, but the throughput reduction was so important (43.5%). When a big amount of VoIP phone calls is considered for HS, the VoIP frame overhead reduction is significant. Moreover, when small sized VoIP frames are considered (for instance G.723, with 64-QAM3/4) VoIP bursts fit better into the last subchannels of DL subframe and thus fewer symbols are wasted. This analysis can be directly applied to fixed nodes, where the modulation type can be negotiated with the BS at connection setup, however for mobiles nodes, it is recommended to use QPSK1/2 for bandwidth estimation and use unscheduled symbols for nrtPS or BE services, since these types of service can support fragmentation.

Fig. 7 shows the mean access delay of VoIP frames in the UL direction. According to “PacketCable™ Audio/Video Codesc Specification” [17], in order two estimate the one-way delay we need to know: 1) Coding delay (comprised of Encoding and Decoding delays), 2) Access delay (comprised of MAC access delay + transmission delay + propagation delay), and 3) Look-ahead delay. The coding + look-ahead delays are constants and accounts for 20 ms and 67 ms for codec G.711 and G.723, respectively. In Fig. 7a, for codec G.711 we see the simulated mean access delays is under 15 ms, plus coding + look-ahead delays the
point to point (P2P) delay becomes under 45ms, which is under the maximum P2P delay allowed for VoIP calls, 150ms. For codec G.723, as shown in Fig. 7b, the simulated mean access delay was under 27ms, this delay becomes less than 94ms when coding + look-ahead delays are considered which is still below the maximum P2P delay.

III. Performance optimization for VoIP Traffic

In order to carry out the performance optimization for VoIP traffic, we designed an algorithm which chooses the best θ frame configuration from Table 2 in order to achieve the maximum number of VoIP phone calls. We evaluated the performance of codecs, G.711, G.723, G.726, G.728 and G.729 using different modulations and codings (QPSK/1/2, QPSK3/4, 16-QAM1/2, 16-QAM3/4, 64-QAM2/3, 64-QAM3/4 and 64-QAM5/6). We also evaluated the performance of VoIP traffic considering two repetition counts for FCH and DL-MAP (RepCnt=4 and RepCnt=1, respectively); moreover HS and cRTP were also considered.

The operating principle of the algorithm is based on the coding repetition count (CRepCount), which is defined by:

$$\text{CRepCount} = \begin{cases} 1; & \text{if } \frac{\text{ClntAvRec}}{\text{Frame}_{x}} < 1 \\ \text{ClntAvRec} \text{ otherwise} \end{cases}$$

Fig. 8. Algorithm’s operation principle

The coding repetition count means the number of frames a VoIP stream has to wait in order to be allocated, as is shown in Fig. 8. Here, we can see a VoIP stream that is allocated every frame (CRepCount=1), one that is allocated every two frames (CRepCount=2), another one that is allocated every three frames (CRepCount=3) and finally one more that is allocated every six frames (CRepCount=6). As we can see, in this terms Frame$_{x}$=Frame$_{x+n}$. We called this as a “cycle”, because based on the fact that VoIP streams are CBR traffic, every six frames have to be allocated the same VoIP streams.

Therefore, if Frame$_e$ is filled with data allocations (for UGS traffic), Frame$_{e+6}$ will be filled too. This means that only Frame$_{e+1}$ to Frame$_{e+5}$ have available symbols for more data allocations. Although this algorithm can model, different VoIP codecs simultaneously, we modeled only one VoIP codec at a time in order to evaluate the performance of each VoIP codec individually.

In Fig. 9 we show the algorithm used to optimize VoIP traffic performance. This algorithm begins by initializing a temporary variable, maxvoipstr. This variable stores the maximum number of VoIP streams reached at any iteration. Then in a Round Robin (RR) mode, each of the configuration parameters is selected. First, the DL-MAP repetition count is selected (1 or 4). Then, a VoIP codec, a modulation and codification are selected. Next, a packet encapsulation (-HS, +HS or +CRTP) is selected.

Finally, θ frame configuration is selected. Once all parameters were selected, the algorithm computes the maximum number of VoIP streams supported (MaxVoIPStreams), using the theoretical model described in section II. This value is compared with the maximum number of VoIP streams reached (maxvoipstr), and the higher value of these two variables is stored into the maxvoipstr temporary variable. This guarantees that at the end of all iterations, the maximum number of VoIP streams reached will be stored into maxvoipstr. Therefore, Table 4 shows the maximum number of VoIP streams reached with the best θ frame configuration for the different VoIP codecs modeled, using different packet encapsulation types. Here, the FCH and DL-MAP repetition count (DLr) is also indicated.

IV. Discussion and Conclusions

The performance optimization presented in this paper indicates that VoIP streams under different configurations can be supported by the WiMAX mobile protocol. There are however performance issues that need to be considered. The general trend from the results was that the system would comfortably support a number of active SSs making a VoIP phone call, where the maximum system throughput is obtained at the point when all available OFDMA symbol are scheduled. After that point, even a slight increase in the number of VoIP phone calls results in system instability. Performance deterioration is not gradual and the packet access delay increases rapidly after the threshold point if there is no control on the traffic accepted. Results shown in Fig. 5 and 6 were obtained using a call admission control (CAC) scheme at call setup (using the simulation model), that computes the available number of OFDMA symbols in each direction (DL and UL). A new call is accepted if there are enough available symbols to allocate SSVoIP [smb/s] in each direction. In general, it was demonstrated that with the use of header suppression, bandwidth efficiency is considerably increased to a large extent, achieving a much higher figure regarding the maximum number of VoIP streams sustainable. We observed that considering HS and cRTP, VoIP streams fits better into DL subframe and fewer symbols are wasted. Therefore more VoIP burst can be allocated instead of VoIP frame overhead. In addition by considering cRTP, the RTP, UDP and IP headers can be reduced to only two bytes where no UDP checksums are
sent. Moreover, system performance highly depends of the DL-MAP repetition count.

For the performance optimization, we used the default value RepCnt=4, however, having RepCnt=1, and combined with cRTP, the number of VoIP-G.723 phone calls that the WiMAX mobile system could support, increases up to 1800 for 64-QAM5/6. Further research will focus on performance analysis of VoIP with mobile SSs considering also silence suppression that reduces VoIP bandwidth by a 60%.

<table>
<thead>
<tr>
<th>Table 4. Maximum number or VoIP streams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codec</td>
</tr>
<tr>
<td>G.711</td>
</tr>
<tr>
<td>G.723</td>
</tr>
<tr>
<td>G.726</td>
</tr>
<tr>
<td>G.728</td>
</tr>
<tr>
<td>G.729</td>
</tr>
</tbody>
</table>

Acknowledgements

This work was supported by DGAPA, National Autonomous University of Mexico (UNAM) under Grant IN IN108910 and IN106609. By research funds from CONACyT grants 105279 and 105117.

REFERENCES

Authors: MSc Luis Ortiz, National Autonomous University of Mexico, Department of Telecommunications, Mexico City, E-mail: lortiz@fi-b.unam.mx; PhD Victor Rangel, National Autonomous University of Mexico, Department of Telecommunications, Mexico City, E-mail: victor@fi-b.unam.mx; PhD Javier Gómez, National Autonomous University of Mexico, Department of Telecommunications, Mexico City, E-mail: javierg@fi-b.unam.mx; PhD Raúl Aquino, University of Colima, School of Telematics, Colima, Mexico, E-mail: aquir@uocol.mx; PhD Miguel López-Guerrero, Metropolitan Autonomous University, Department of Electrical Engineering, Mexico City, E-mail: milo@xanum.unam.mx;