Information Management

DB2 pureXML

© 2011 IBM Corporation

Information Management

Agenda

* Overview

* Inserting XML data

e XPath

* XQuery

* Querying XML data using SQL/XML

* Querying XML data using XQuery

* Update & Delete operations with XML
* XML Indexes

* XML Schema Validation

Other XML support

[]
o P TP m e plAale) - A
d e, A © 2011 IBM Corporation

Information Management

Supporting reading material & videos

* Reading materials

* Getting started with DB2 Express-C eBook
* Chapter 15: DB2 pureXML

* Getting started with IBM Data Studio for DB2 eBook
* Chapter 4: Creating SQL and XQuery scripts

* Videos

* db2university.com course AAOO1EN
* Lesson 11: DB2 pureXML

© 2011 IBM Corporation

Information Management

Agenda
HH[& * Overview

* Inserting XML data

* XPath

* XQuery

* Querying XML data using SQL/XML

Querying XML data using XQuery

Update & Delete operations with XML

XML Indexes

XML Schema Validation
e Other XML support

N N |

Information Management

What is XML? v
) <authors>
= eXtensible Markup Language <author id=" 47">John Doe</author>
— XML |S a |anguage deS|gned <author id=" 58">Peter Pan</author>
. </authors>
to describe data <title> Database systems</title>
= A hierarchical data model /ool

[Characteristics of XML]
I

Flexible Easy to De_scrlbes
share itself
B
Easy to Vendor Platform

extend Independent’ Independent

‘II"" A s © 2011 IBM Corporation

XML stands for eXtensible Markup Language. XML'’s popularity and use has grown
exponentially in the past few years. Why is XML important?

- XML is the foundation of web services , and web services are the foundation of
information on demand. Information On Demand , as its name implies, is
making information available whenever it is requested. This can be made
possible by providing information as a service.

- XML is also at the core of Web 2.0 technologies.

XML is at the base of these concepts; without it, they would be hard to implement.

XML data uses a hierarchical model , which is most appropriate to store unstructured types
of information.

XML has a set of specific characteristics:

- Flexible : easy to modify or adapt

- Easy to extend : you can create your own tags

- Describes itself : XML Schema (which itself is an XML document) provides rules
and description to tags used in a document

- Can be transformed to other formats : e.g. to HTML, XSLT

- Independent of the platform or vendo r

- Easy to share : easy to share with other applications since it can be stored as a text
document

Information Management

Who uses XML?

Banking Life Sciences Retail
IFX, OFX, SWIFT, SPARCS, MIAME, MAGE, IXRetail, UCCNET, EAN-UCC
MISMO +++ LSID, HL7, DICOM, ePC Network +++
CDIS, LAB, ADaM +++ il
ectronics
Healthcare PIPs, RNIF, Business Directory,

HL7, DICOM, SNOMED,

LOINC, SCRIPT +++ Open Access Standards +++

Insurance Telecommunications
ACORD _ eTOM, NGOSS, etc.
XML for P&C, Life +++ Parlay Specification +++
Financial Markets Automotive
FIX Protocol, FIXML, MDDL, ebXML, Energy & Utilities
RIXML, FpML +++ other B2B Stds. |EC Working Group 14
Multiple Standards
Cross Industry Chemical & Petroleum CIM, Multispeak
PDES/STEPmI Chemical eStandards
SMPI Standards CyberSecurity
RFID, DOD XML+++ PDX Standard+++

1 % | e, R ; A) CA i
‘IIIIII - -__ ! © 2011 IBM Corporation

XML is used by many different industries, such as banking, healthcare, etc.

Information Management

XML document: Serialized representation
Root element

<book> = ;
o0 Attribute

<authors> -
<author id="47">John Doe</author>
<author id="58">Peter Pan</author>

</authors>

<title>Database systems</title> «

<price>29</price>

<keywords>
<keyword>SQL</keyword> 4
<keyword>relational</keyword>

</keywords> ki

</book>

Element

Text node (Data)

1 : f = T c PIAlE) - CA i
‘IIIIII il ©2011 IBM Corporation

XML is a language designed to describe data. It is comprised of nodes such as elements and
attributes.

Its components are:
- element
- root element
- attribute
- text nodes

In this example:
- root element: <book>
- element: <authors>, <author>, <title>, <price>, <keywords>, <keyword.
- attribute: id="47", id="58"
- text nodes: John Doe, Peter Pan, Database systems, 29, SQL, relational

Information Management

XML document: Parsed-hierarchical representation

B Node Types
Document Node ———» [Document node
____| Element nodes
Attribute nodes
book Text nodes
authors title price keywords
’author‘ ’author‘ ' Database ‘ ! 29" keyword H keyword
- systems
id=47 | John Doe | id=58 Peter Pan 'SQL | relational |

l f P STy C PIA(E] - CA i
IIIIII A 20 N © 2011 IBM Corporation

This is just another example showing the different types of nodes that an XML can have:
- root

- element

- attribute

- text

Information Management

Well-formed vs. valid XML documents

» A well-formed XML document is a document that follows

basic rules:
1) It must have one and only one root element
2) Each element begins with a start tag and ends with an end tag
3) An element can contain other elements, attributes, or text nodes
4) Attribute values must be enclosed in double quotes. Text nodes,
on the other hand, should not.

= A valid XML documentis BOTH:
1) A well-formed XML document
2) A document compliant with the rules defined in an XML schema
document or a Document Type Definition (DTD) document.

© 2011 IBM Corporation

1 ‘
e ek

There are two concepts that people often get confused with regarding XML documents.
- well-formed XML documents
- valid XML documents

RS

A well-formed XML document is a document that follows these basic rules.
- It must have one and only one root element.
- Each element begins with a start tag and ends with an end tag.
- An element can contain other elements, attributes, or text nodes.
- Attribute values must be enclosed in double quotes. Text nodes, on the other hand,
should not.
e.g.:
- missing ending tag:
<employee>
<name>John
</employee>
- no root node
<department></department>
<name>John</name>

A valid XML document is
- A well-formed XML document.
- A document compliant with the rules defined in an XML schema document or a

Document Type Definition (DTD) document.

pureXML overview

10 May 30, 2011 IBM Confidential © 2011 IBM Corporation

First we show a very simple overview of a relational management system on the left,
where you issue SQL that is processed by a relational engine which access the data
stored in tables.

10

pureXML overview

<employee id="9">
<name>John </name>
<phone> 555 1212</phone>
</employee>

11 May 30, 2011 IBM Confidential © 2011 1BM Corporation

Now, because of Web 2.0 and SOA we have an exponential growth in the usage of XML.

How is XML stored in many database products?

pureXML overview

12 May 30, 2011 IBM Confidential

Well, they are mapping the XML document to table format (so converting it from

hierarchical to relational format).

<employee id="9">
<name>John </name>
<phone> 555 1212</phone>
</employee>

/

© 2011 IBM Corporation

12

pureXML overview

XQuery

SQL

13 May 30, 2011 IBM Confidential

Next, when you issue an XQuery,

<employee id="9">
<name>John </name>
<phone> 555 1212</phone>
</employee>

/

© 2011 IBM Corporation

13

pureXML overview

}uery

SQL

14 May 30, 2011 IBM Confidential

since Xquery cannot be understood by the relational engine, it has to be mapped to SQL

first, behind the scenes.

<employee id="9">
<name>John </name>
<phone> 555 1212</phone>
</employee>

/

© 2011 IBM Corporation

14

pureXML overview

15 May 30, 2011 IBM Confidential

With DB2 pureXML technology, we don't do this.

<employee id="9">
<name>John </name>
<phone> 555 1212</phone>
</employee>

© 2011 IBM Corporation

15

pureXML overview

<employee id="9">
<name>John </name>
<phone> 555 1212</phone>
</employee>

16 May 30, 2011 IBM Confidential © 2011 1BM Corporation

PureXML has two main characteristics:

1) DB2 has a second part for its engine that understands native XML

This means it can understand Xquery, so there's also no need to map to SQL

16

pureXML overview
<employee id="9">

<name>John </name>
<phone> 555 1212</phone>

</employee>

SQL
emp;oyee

‘ id=9 ‘ ‘name‘ ‘phone|

(gohn] [s55-1212]

© 2011 IBM Corporation

IBM Confidential

17 May 30, 2011

2) XML is stored in parsed-hierarchical format in the database.
So there is no mapping required. There is no conversion from hierarchical to relational

The XML is stored as a tree which is hierarchical in nature.

17

pureXML overview

XQuery

SQL

. . . /(:\\ /(:\\

18 May 30, 2011 IBM Confidential

So now, if we issue a Xquery statement,

<employee id="9">
<name>John </name>
<phone> 555 1212</phone>

</employee>
employee
I
‘ id=9 ‘ ‘name‘ ‘phone|
(gohn] [s55-1212]

© 2011 IBM Corporation

18

pureXML overview

<employee id="9">
<name>John </name>

<phone> 555 1212</phone>
XQ u e ry </employee>
employee
[
‘ id=9 ‘ ‘ name ‘ ‘ phone|
(gohn] [s55-1212]
v v

. . . /(:\\ /J:\\

19 May 30, 2011 IBM Confidential © 2011 IBM Corporation

It can be understood by the XML part of the engine without any mapping required.
In summary, the storage format = the processing format
Therefore, performance will better, there will be less code, and easier maintenance.

Note as well that the two parts of the engine (relational and XML) can talk between each
other, so | can combine SQL with Xquery as we will see next.

19

Information Management

Integration of XML and relational data
PATIENTS table

NAME SEX AGE COFFEE SMOKE DNA
@
Elizabeth = F 65 35 15 & O qenex - 057
/ X\ \
@)
Raul M 47 10 0

/ geneX =987

/5

Tina F 58 4 10 ./ \’
geneX =123
1 :) S PDIAlE) - d
ﬂ 74 DO g T ©2011 IBM Corporation

Integrating relational and XML data in the same query can also lead to useful information.
For example, let's say | am a medical researcher and I'm trying to find the cure of cancer.
Let's say I've been doing this for the past 25 years where I've been storing information
about my patients in a table, where | have relational data like the name of the patient, the
sex of the patient, the age, how many years this patient has been drinking coffee, how
many years this patient has been smoking, and I'm also storing the DNA of each patient on
the last column. And I'm storing DNA information as an XML document because XML is
good to store unstructured or semi-structured type of information like DNA. | am
representing the XML document as a tree because an XML document is hierarchical and a
tree is hierarchical in nature. Now let's assume that all cancer patients or most of my
cancer patients have a gene X with a value of 987.

So with DB2 | can integrate relational data like coffee and smoking, which are some factors
that may or may not cause cancer, and this gene X with a value of 987, which seems to
appear in most cancer patients. Let's see how we can do this on the next slide.

20

Information Management

SQL with XQuery/XPath

SELECT name from PATIENTS

WHERE

xmlexists (‘$p/Patient/MedicalDetail[geneX="987"]'
passing PATIENTS.DNA as "p")

and sex = 'F'

and age > 55

and coffee > 15

and smoke > 10

1 . _ e b CA e . - CA i
ﬂ A NP © 2011 IBM Corporation

Running this query we can perform this integration.

The first two lines and the last four lines are just SQL as usual where I'm selecting the
name from the patient's table and I'm doing some filtering based on the sex, the age,
coffee, and smoking. The third and the fourth line is what are new with DB2. First, we call
the XMLEXISTS function which is part of the SQL/XML standard. This function allows me
to perform some test to see if a condition is satisfied in the XML document, and | use this
as another filter for my query.

The $p is a variable (anything with '$' means it's a variable), and this variable is defined in
the 4™ line, where I'm assigning PATIENTS.DNA to 'p'. PATIENTS.DNA is the XML
column, so I'm basically passing to 'p' the XML document. Then going back to line 3, in
$p/Patient/MedicalDetall... I'm using Xpath to traverse the XML document until | test if
geneX = '987".

So | am combining SQL with XPATH or XQUERY, or mixing the relational model with the
hierarchal model of XML.

The end results is that | may be able to find some correlation between several factors like
drinking coffee or smoking with the appearance of this gene, and this type of queries may
help find the cure of cancer.

21

Information Management

Native XML storage
= Documents are stored in parsed representation

customerinfo

custome Object custome
Model
‘ Id="1" name Hsex ‘phone‘ ‘Id=”2” name Hsex ’phone
\Victor M | type = | 739-1274 April F type = | 983-2179
“work” “home”

<customerinfo>

<customer id ="1">

<name>Victor </name>
‘Al : <sex>M</sex>
Serlallzatlon <phone type="work">739-1274</phone>

</customer>

<customer id ="2">
<name>April </name>
<sex>F</sex>
<phone type="home">983-2179</phone>
</customer>
</customer ks

oo
00 _

© 2011 IBM Corporation

1 7
T2 e ek

When the XML document is inserted into the database, DB2 parses the XML document

and stores it internally as a parsed tree using the XQuery Data Model (XDM). This tree is
persistent.

If you want to do the opposite process (going from a parsed-tree format to a serialized
format), this is called serialization

Information Management

Native XML storage

= XML stored in parsed hierarchical format

create table dept (deptID char(8),..., deptdoc xml);

= Relational columns
are stored in relational
format (tables)

= XML columns are
stored natively

= XML stored in UTF8

© 2011 IBM Corporation

To store XML documents, you create a table as usual, but for XML documents, you need to
create a column defined with the XML data type. So in the example, there is a table “dept”
which has a relational column “deptID” defined as char(8); and then we have a column
“deptdoc” defined as XML.

23

Information Management

Agenda

* Overview
HH_ * Inserting XML data
* XPath
* XQuery
* Querying XML data using SQL/XML
* Querying XML data using XQuery
* Update & Delete operations with XML
* XML Indexes
* XML Schema Validation
e Other XML support

e

© 2011 IBM Corporation

24

Information Management

Table definitions with XML columns

create table items (
id int primary key not null,
brandname varchar(30),
itemname varchar(30),
sku int,

srp decimal(7.,2
comments xnl

create table clients(
id int primary key not null,
name varchar(50),
status varchar(10),
contact xml

);

1 ‘
s

© 2011 IBM Corporation

4

d @

Let's say we have these two tables that we are going to create, the items table and the
clients table, where the last column is defined with the XML data type for both tables. XML
columns do NOT need to be defined on the last column of a table, we just put them there in
this particular example.

Information Management

XML documents to load to tables “client” and “item”

= Assume these files are in C:\DB2workshop

<?xml version="1.0" ?=

- «Client xmins:xsi="http: / fvwww.w3.0rg/2001 /XMLSchema-instance”

- <Address:
<street>5401 Julio Ave. </strest:
<city =San Jose</city =

Mame =
Iil EIiEﬂtﬂﬂ?. }I.TI'Il N EE— <state=CA«/statex

2| Client4309. xml
2 Client568 1, xml
2| Client8877. xml
= Client9077. xml
2| Client9177. xml

[

[

[

[

[

<ZIp=95116+=/zip=
</Address:

- «<phone:
<work=4084630000</work:
<home=4081111111</home:=

ccell=4082222222 < /cell=

<email=love2shop@yahoo.com</email=

_ «/Client=

. dients.del - Notepad
File Edit Format View Help

2 ClientInfo.xsd
E dients.del

= Comment3926. xml
= | Comment4023. xml

3227,E11a Kimpton, Gold, <XD5 FIL{'Client3227.xml’| />, =]
8877,Chris Bontempo,Gold, <XDS F iy '/
9077,L1s5a Hansen, 51lver,<xXDs FIL="Client9077.xml’ /=,
9177, Ri1ta Gomez, standard, <XDs FIL="Client9l77.xml’ /=,

5881, Paula Lipenski,standard, <xD5 FIL="Client5881l.xml" /=,

= Comment4272, xml

iterns. del
table_creaton. txt

1 i
s

4309, Tina wang, Standard, <¥D5 FIL="Client4309.xml" /= _I
T .
1KE XML Document
1KB DEL File

2EB TextDocument

© 2011 IBM Corporation

This figure shows several files under the directory “C:\DB2workshop”.

The file “CLIENT. DEL” is a Delimited ASCII file which has data separated by commas (the
delimiter). If we pick the first row in this file, and the last column in that row, we see
something like “<XDS FIL="Client3227.xml'>. This is a pointer to an XML file, and the
contents of this file are also shown in the figure.

Similarly there is an items.del file, and corresponding XML files.

Basically we are explaining in this figure what we plan to insert into the tables we created

earlier.

26

Information Management

Inserting XML documents

= 1st method: A simple SQL INSERT

» Can be implicitly or explicitly

= Implicit XML parsing: XML document entered as a str ing

INSERT INTO clients VALUES (77, 'John Smith', 'Gold '
' <addr>111 Main St., Dallas, TX, 00112</addr>') ;

= Explicit XML parsing with the XMLPARSE function

» Tell system how to treat whitespaces (strip/preserve)
* Default is 'Strip WHITESPACE'

INSERT INTO clients VALUES (77, 'John Smith’, ‘Gold '
xmlparse (document '<addr>111 Main St., Dallas TX,
00112</addr>' preserve whitespace));

(-._.. - = X CA e A > CA
e
. hd @ 3

There are two methods to insert an XML document in a table:
1) Use a simple SQL INSERT.
You can do this implicitly or explicitly.

Implicitly means that you simply pass the XML document as a string, and because it is
being inserted into an XML column, DB2 will know if has to parse it.

Explicitly means you must tell DB2 with the XMLPARSE function to parse the XML
document. You can also indicate how to treat white spaces.

27

Information Management

Inserting XML documents

= 2nd method: Use the DB2 IMPORT utility

xml from "C:\DB2workshop" INSERT INTO

IMPORT from "C:\DB2workshop \ clients.del " of del
xml from "C:\DB2workshop" INSERT INTO
CLIENTS (ID, NAME, STATUS, CONTACT);

IMPORT from "C:\DB2workshop \ items.del " of del

ITEMS (ID, BRANDNAME, ITEMNAME, SKU, SRP,COMMENT S);

1 1
s e ek

© 2011 IBM Corporation

The second method is to use the IMPORT utility. Going back two slides we showed the
contents of the C:\DB2workshop directory. Now the files in that directory are used in the

IMPORT command.

28

Information Management

Agenda

* Overview

* Inserting XML data
HH_ « XPath

* XQuery

* Querying XML data using SQL/XML

* Querying XML data using XQuery

* Update & Delete operations with XML

* XML Indexes

* XML Schema Validation

e Other XML support

s

© 2011 IBM Corporation

29

Information Management

XPath
- XML Query Language el b= ke
<employee id=" 901">
= Subset of XQueI’y & SQL/XML <name>John Doe </name>
; <phone> 408 555 1212</phone>
<office> 344</office>
/dept </employee>
/deptiemployee <employee id=" 902">
/dept/employee/@id <name>Peter Pan </name>
/dept/employee/name <phone> 408 555 9918</phone>
/dept/employee/phone <office> 216</office>
/dept/employee/office dept </employee>
(..) </dept>
Each node has a path /\
employee employee
id=901 name phone office id=902 name phone office

/ | \ / | \

r\]ﬂm Doe ’ ‘ 408-555-1212 ’ | 344 Peter Pan 408-555-9918 216
- ‘ " ©2011 1BM Corporation

XPath is a language that you can use to navigate an XML document. It is not something
proprietary of IBM, but it's a standard. It's basically a query language. What we have here
on the right an XML document in serialized representation.

Below is the same document represented as a tree, also known as a parsed hierarchical
representation. So these two representations are exactly the same thing, and in this case,
you can think of the parsed-hierarchical representation as the way that DB2 stores the XML
document inside the database, in a persistent way.

Some XPath expressions are shown at the top left corner. XPath is fairly easy to learn; it is
very similar to the cd (change directory)command that you used in MS-DOS, Windows,
Linux, Unix,. For example, you go:

CD /directory/subdirectory/ subdirectory, so basically you are using the cd
command to navigate a tree, which is hierarchical in nature.

The same thing happens with XPath, you go, for example, /dept/employee/name ; that
means you are going to the dept element first, or the root, then you go to employee, then
you go to name and you will get this information which is John Doe. Now in this case, there
are, as you can see, two employees, so you will get both, you will get all the way to John
Doe and all the way to Peter Pan.

30

Information Management

XPath: Simple expressions

<dept bldg=" 101">
<employee id=" 901">

= Use fully qualified paths to specify sname=Johin Boe </name=>
. <phone> 408 555 1212</phone>
elements/attributes <office> 3a4<loffice>

</employee>
<employee id=" 902">
"*@" is used to specify an attribute <name>Peter Pan </name>
<phone> 408 555 9918</phone>
<office> 216</office>

= use “text()” to specify the text node </employee>
under an element sldept=
XPath Result
/dept/@bldg 101
/dept/employee/@id 901
902
/dept/employee/name <name> John Doe </name>
<name>Peter Pan </name>
/dept/employee/name/text() Peter Pan
John Doe

© 2011 IBM Corporation

There are different other things you can do with XPath. There are several XPath
expressions to choose exactly what you want, so we will go through some of them very
quickly.

Assuming that the top right XML document is the one I'm working on, if | do a:

/dept/@bldg , the @ symbol means that | want the attributes, that’s why it is retrieving 101,
because that'’s the attribute 101.

Then for /dept/employee , attribute id, the same thing. In this case the attribute will be 901.
And because there two employees, there is also 902, so that's why | am getting both
attributes , 901 and 902.

A/ dept/ enpl oyeel/ nane, is the same example | provided in the previous slide. Note
that what | am getting as well is the tag nhame, and the ending tag, that is just the way it
works, the tags will be included.

If you don’t want the tags to be included, then you can add the function called text at the
end of the XPath, so that you only get the values, as you can see in the last example

expression.

31

Information Management

<dept bldg=" 101">

XPath: Wildcards <employee id=* 901>

<name>John Doe </name>
<phone> 408 555 1212</phone>

<office> 344</office>
= * matches any tag name </employee>

= // is the “descendent-or-self’ wildcard <employee id=" 902">
<name>Peter Pan </name>
<phone> 408 555 9918</phone>
<office> 216</office>
</employee>

</dept>

XPath Result
/dept/employee/*/text() John Doe

408 555 1212

344

Peter Pan

408 555 9918

216
/dept/*/@id 901

902
IIname/text() John Doe

Peter Pan
/dept//phone <phone> 408 555 1212</phone

05/30/2011 <phone> 408 555 9SESHBNARSS cmentation

© 2011 IBM Corporation

On this slide, using the same example XML document as before, if you use:

/ dept / enpl oyee/ *, asterisk is a wildcard and it's basically any one element. It will go
dept, employee and will get all of these: John Doe, 408, 344, and then the same for the
other employee.

The second row in the example is similar: Go to dept, whatever element, and get the
attribute id, 901 and 902.

For the third row, two slashes means that it's not just one element, but a number of
elements up to when you reach name. So for example, here is name, any elements above,
| don’t care what they are, any elements. And then get me the text: that's Peter Pan, John
Doe.

Finally, the last row of examples: / dept / / phone, means any elements between dept and
phone.

32

Information Management

XPath: Predicates T

<employee id=" 901">
<name>John Doe </name>

" Predicates are enclosed in square P

brackets [.] <office> 344</office>
= Can have multiple predicates in one </employee>
XPath <employee id=" 902">
. . <name>Peter Pan </name>
= Positional predicates: [n] selects the n- <phone> 408 555 9918</phone>
th child <office> 216</office>
</employee>
</dept>
XPath Result
/dept/employee[@id="902"]/name <name> Peter Pan </name>
/dept[@bldg="101")/employee[office >“300"]/name <name>John Doe </name>
llemployee[office="344" OR office="216"]/@id 901
902
/dept/employee[2]/@id 902

© 2011 IBM Corporation

&

d @

A

Using square brackets is analogous to the WHERE clause in SQL. For example, for the
first row, you say / dept / enpl oyee, where attribute id is 902, and from there it takes the
name. That's why it gives Peter Pan.

In the expression in the second row you have two conditions

In the expression i n ther 3™ row, we have two slashes, so whatever elements there are
before employee, then where office equals 344, or office equals 216, and from there take
the attribute id.

The last example in the 4™ row has a [2]. This means | want the second employee.. If it was
one, it will be “I want the first employee”

33

Information Management

XPath: Parent axis

<dept bldg=" 101">
<employee id=" 901">
<name>John Doe </name>

<phone> 408 555 1212</phone>
<office> 344</office>

</employee>

<employee id=" 902">
<name> Peter Pan </name>
<phone> 408 555 9918</phone>
<office> 216</office>

“ Current context:

“ Parent context:

</employee>

</dept>
XPath Result
/dept/employee/namel../@id=“902"] <pame> Peter Pan </name>
/dept/employee/office[.>“3007] <office> 344</office>
/dept/employee[office > “300”]/office <office> 344</office>
/dept/employee[name="“John Doe”}/../@bldg 101
/dept/employee/name[.=“John Doe”]/../../@bldg 101

1 | / S T PIA(E) c CA i
‘II"" » s N ©2011 IBM Corporation

This is similar to when you use the change directory command where you can use “.” or “..
which indicate the current context or the parent context.

34

Information Management

Agenda

* Overview
* Inserting XML data
* XPath
HHE‘ * XQuery
* Querying XML data using SQL/XML
* Querying XML data using XQuery
* Update & Delete operations with XML
* XML Indexes
* XML Schema Validation
e Other XML support

s

© 2011 IBM Corporation

35

Information Management

What is XQuery?

= XQuery supports path expressions to navigate XML
= XQuery supports both typed and untyped data

= XQuery lacks null values because XML documents omit missing or
unknown data

= XQuery returns sequences of XML data

© 2011 IBM Corporation

XQuery is a superset of XPath. XQuery is used to navigate an XML document. There are
other components shown in this chart the are also part of Xquery. Some of them are
discussed in more detail later on.

Xquery returns a sequence of XML data. In Xquery there are no NULL values. Instead,
blanks are used.

36

Information Management

XQuery: The FLWOR expression

" FOR: iterates through a sequence, bind variable to item s
" LET: binds a variable to a sequence

* WHERE: eliminates items of the iteration

* ORDER: reorders items of the iteration

RETURN: constructs query results

e
00

1 i
e ek

Within XQuery, we have something called the FLWOR expression, F-L-W-O-R, and with
that expression you can do more manipulations. FLWOR stands for: For, Let, Where,
Order, Return.

FLWOR is to Xquery what in SQL would be a SELECT-FROM-WHERE ORDER BY
clause.

© 2011 IBM Corporation

37

Information Management

XQuery: The FLWOR expression

Input:
create table dept <dept bldg=" .101">
(deptID char(8),deptdoc xml); <employee id=" 901">

<name>John Doe </name>
<phone> 408 555 1212</phone>
<office> 344</office>

xquery </employee>
for $d in <employee id=" 902" >
db2-fn:xmicolumn('DEPT.DEPTDOC")/dept <name>Peter Pan </name>
let $emp := $d//employee/name <phone> 408 555 9918</phone>
where $d/@bldg > 95 <office> 216</office>
order by $d/@bldg </employee>
return </dept>
<EmpList>
{$d/@bldg, $emp}
</EmpList>

1 _ _ _ PIAlE) c CA i
ﬂ A P@FTE RS ©2011 IBM Corporation

Let's look at this example. At the top right corner | have an XML document we will use as
input. At the top we have the table definition of the dept table with a relational column, and
an XML column where we assume have stored the XML document to be used as input for
the XQuery.

You can also see the FLWOR expression. | have to always prefix this by XQuery, because
if we don’t put XQuery at the beginning, then DB2 will assume by default that we are using
SQL, or that you are going to run an SQL statement.

Let's look at the FLWOR expression: “for $d in, etc”. here, | am getting into variable “d”
the XML document that is provided with the function db2-fn:xmlcolumn;

“let $emp...” , | am assigning a new variable called emp, the value of $d, which was the
entire XML document, / / enpl oyee/ nane,

“where $d...”, here are some conditions which are later ordered by

Then what | want to return is Emplist , so what exactly will appear is $ d@bldg, so it will use
101, and then $emp, whatever name was involved, so John Doe, and Peter Pan as well as
part of this, and close with Emplist.

You can use the FLWOR expression to change the format of your XML document. For
example, you can make it follow the rules or the syntax of RSS or Atom. Then that way you
could create a feed out of this XML.

38

Information Management

Agenda

* Overview
* Inserting XML data
* XPath
* XQuery
HH * Querying XML data using SQL/XML
* Querying XML data using XQuery
* Update & Delete operations with XML
* XML Indexes
* XML Schema Validation
e Other XML support

s ek

© 2011 IBM Corporation

39

Information Management

Two worlds

XQuery
SQL/XML Standard

Standards

&

d @

© 2011 IBM Corporation

1 1
T o ek

Plain SQL statements enable you to retrieve full XML documents but you cannot specify
XML-based query predicates, and you cannot retrieve partial XML documents. For
example, if | just had SQL, | would only be able to get the entire XML document:

If you do a “select deptdoc from dept ” where deptdoc is an XML column, you will retrieve
all the XML document in that table, so a simple SQL statement like this can work with XML.
However, what if you only want part of the XML document to be retrieved? Or what if you
want to use part of the XML document as a condition in the WHERE clause? In those
cases you cannot just use SQL, you need other standards:

1. SQL/XML (which an extension to SQL that includes XML functions so it works as a
bridge between the SQL and XML world), or

2. Xquery (A superset of XPath)

40

Information Management

Two worlds

XQuery
SQL/XML Standard

Standards

1 . e S . c PIA(E) C .
.72 e, © 2011 IBM Corporation

DB2 supports both, SQL/XML and Xquery

41

Information Management

Two worlds

XQuery
SQL/XML Standard

Standards

1 _ _ . e plAale) - A i
R i I}
.72 s, A © 2011 IBM Corporation

Let's start describing the SQL/XML standard first

42

Information Management

SQL/XML functions

XMLPARSE Parses character/BLOB data, produces XML value

XMLSERIALIZE Converts an XML value into character/BLOB data

XMLVALIDATE Validates XML value against an XML schema and type-
annotates the XML value

XMLEXISTS Determines if an XQuery returns results (i.e. aseq uence
of one or more items)

XMLQUERY Executes an XQuery and returns the result sequence

XMLTABLE Executes an XQuery, returns the result sequence as a
relational table (if possible)

XMLCAST Cast to or from an XML type

© 2011 IBM Corporation

In SQL/XML, which is a part of the new SQL 2006 standard, that includes XML functions,
there are different functions that we can use. Here is a list and description of some popular
SQL/XML functions.

XMLPARSE, we talked about XMLPARSE when we were doing that insert;
XMLSERIALIZE is the opposite of XMLPARSE;

XMLVALIDATE for validation of an XML document vs. an XML schema. We will talk a little
more about this at the end of this presentation.

XMLEXISTS, XMLQUERY, XMLTABLE etc., we will show some examples of these
functions in the next few slides.

Information Management

XMLEXISTS function

= Use it on the WHERE clause to filter rows based on an XML
element value

= Syntax 1: Explicitly create a variable to hold the XML document

select name from clients
where
xmlexists (‘$c/Client/Address[zip="95116"]'
passing CLIENTS.CONTACT as "c")

= Syntax 2: A variable is automatically created with the name of the
XML column

select name from clients
where
xmlexists ('$CONTACT/Client/Address[zip="95116"]")

1 _ 1l) - o, i

XMLEXISTS function allows me to perform a test based on the XML column, and that way |
can restrict some number of rows, for example, here | say select name from clients, where,
XMLexists, $ c, Client, address, zip, 9511 6assing CLIENTS.CONTACT as c. So basiclly
the first two lines are just SQL as usual; | want the name from clients.

then the third line uses XMLexists. The $ c is a variable. Aything with a $ represents a
variable. Where is the variable defined? This variable is defined on the fourth line, the one
that says passing CLIENTS.CONTACT as ¢

CONTACT s the column that contains the XML document, and CLIENT is the name of the
table

So now, the variable ¢ has the XML documents. And thenthe / C i ent / Addr ess, is
XPath, where square brackets are used like a where clause in SQL, to test that zip is
95116.

Basically the XMLexists function allows me to filter some rows based on an element value,
which in this case is zip.

So | want the all the rows, where in the XML document the zip element is 95116. So that’s
what we are doing with this example.

With DB2 9.5 the syntax has been simplified. In the example below we go select name from
client where XMLexist, and we have $ CONTACT . This is a variable that is automatically
created with the same name as the column name that contains the XML.. There is no

need to assign a value to it in the syntax anymore.

44

Information Management

Case sensitivity - Caution!
= SQL is not_case sensitive
= XPath and XQuery are case sensitive!
= DB2 objects (tables/columns) need to be put in uppe r case.

= Example:

Incorrect:

select name from clients x
where

xmlexists ('$ contact /Client/Address|[zip="95116"]) <"
select name from clients

where V

xmlexists ('$ CONTACIClient/Address[zip="95116"]) 1&"1 ")

1 _ 1l) - o, i

SQL is not case sensitive, so when you are working with SQL, you don’t care about the
case; however, with XPath and XQuery, you do have to be careful about it. And if you
combine SQL with XQuery/XPath, then the SQL part can still be in any case, but for the
XPath and XQuery part you must take into account the case.

Correct:

So, for example this select name from clientgart could have been written in any case, and
then XMLexists could also be in any case, but for whatever is inside this function, is case
sensitive. For example, Client, if you had put the C in lowercase, then you would have
probably received an incorrect result. There would not be an error because the syntax is
ok, but DB2 would not be able to find this path, and then you get an incorrect result.

Now, why is contact (in lowercase) incorrect, and CONTACT (in uppercase) correct? What
happens is that DB2 objects, that is, tables, columns, etc. have to be put in uppercase.
because when you create an object like a table in DB2, it is normally going to be stored in
uppercase regardless of the case used in the create tablestatement. Of course you can
use double quotes to force a DB2 table to be created in lowercase, but this is not
recommended in general because it will just add complexity to handling the tables.

This is why every time you invoke the name of a column or a table within the Xpath/XQuery
part of the query, it needs to be in uppercase.

Note: If you work with Data Studio, Data Studio creates objects exactly as how you typed
them. We suggest you use uppercase when creating objects in Data Studio.

Another thing to consider is the use of quotes. Ensure they are straight quotes, and not
curly quotes. Programs such as MS-Word/Powerpoint tend to change straight quotes to
curly quotes automatically, so if you copy/paste a statement from those programs, you may
have problems with the quotes.

45

Information Management

XMLQUERY function

* Retrieve one or more element values from the XML do cument

select

xmlquery (‘$CONTACT/Client/email’)
from clients
where status = 'Gold'

A

&

d @

© 2011 IBM Corporation

The XMLQUERY function allows me to retrieve an XML element, like email, as a column.
In the example, the emall is treated as a column, but actually it is an element of the XML
document.

And then you say from client where status = ‘Gold". In this case, | am using a relational
column to filter the rows that | want, and | am getting an XML element back.

In the previous example, going back here, in the previous example, we were totally doing
the opposite, we were using an element zip to do the filtering of the rows, and we were
getting a relational column back.

If you try this query out, when you get the result it will say 3 records are retrieved, but you
will only see one. Ithis happens because the first two are blank. This was mentioned briefly
earlier where it was said that in XML, there is not such thing as a NULL. In XML, you get
blanks.

46

Information Management

Retrieve XML data using the FLWOR expression

SELECT name,
xmlquery (' for $e in $CONTACT/Client/email[1]
return $e")
FROM clients
WHERE status = 'Gold'

1 I . S— S C PDIAlE) - Ch i
‘""II 4 N B8 s © 2011 IBM Corporation

This is another example that uses XMLQUERY, but inside the function, we are using the
FLWOR expression. We are using For. Any time you see For, it is a FLWOR expression. It
does not have to be complete. You don’t actually need to use FLWOR expression in this
example, you could have just returned the email without the For $ eand return $ e, but we
are just putting this for illustration purposes, so that you can see that you can put a FLWOR
expression within the XMLQUERY.

47

Information Management

Retrieving and transforming XML into HTML

SELECT
xmlquery(‘for $e in SCONTACT/Client/email[1]/tex t()
return <p>{$e}</p>)
FROM clients

WHERE status = 'Gold'

o0

ney © 2011 IBM Corporation
(X I

1 i
e e ek

in this example note we have <p> and </p>. This is HTML and $e is going to return XML.
So this example illustrates you can embed/combine HTML and XML together.

48

Information Management

XMLTABLE: From XML to relational

select t.comment#,i.itemname,t.customerlD,Message
from items i,
xmltable (‘$COMMENTS/Comments/Comment’
columns Comment# integer path '‘CommentID ;
CustomerlID integer path 'CustomerlD’,
Message varchar(100) path 'Message') ast

1 _ _ _ PIAlE) c CA i
ﬂ A P@FTE RS ©2011 IBM Corporation

This function called XMLtable is used when you want to go from XML to relational. So for
example, you have your system that works with the relational model, then your company
bought a software product from another company that works in XML, and now you want the
two systems to talk. Potentially you can convert the XML that comes from the other system
to relational by treating it as a table. So here we are invoking the XMLtable function, and
we are going to go all the way to the Comment element, and then from there we are going
to say the columns that | want to define in this table are Comment#, defined as integer, and
the last element in the path is going to be CommentID.

Comments/Comment/CommentID. Then, for CustomerID, the same thing: integer, path
and then CustomerID. For message, the same thing; although it's a Message.

And then | give an alias, which is t. So basically we are doing select, etc. from itemsand
fromt as well, from two tables.

49

Information Management

XMLELEMENT: From relational to XML

select
xmlelement (name "item",itemname),
xmlelement (name "id", id),
xmlelement (name "brand",brandname),
xmlelement (name "sku",sku)

from items

where srp < 100

* Some other functions that work with XMLELEMENT are;

XMLNAMESPACES : Specifies a namespace for the element being created
XMLATTRIBUTES: Specifies an attribute for the element
XMLCONCAT: Concatenates elements

1 - e A CA - A - CA i
/i i o © 2011 IBM Corporation
e o %

Moving on, we have the XMLelement function which is similar to, or basically does the
opposite of the XMLtable. This one goes from relational to XML, so you have all
information in tables and you can convert them into XML document. So XMLelement is one
of these functions that you can use for XML creation.

There are other functions listed as well like XMLNAMESPACES, XMLATTRIBUTES, etc.
that will help build the XML doc.

50

Information Management

XMLTABLE vs XMLELEMENT

XMLELEMENT

1
s

XML

Relational

XMLTABLE

This figure summarizes the purpose of the last two functions:

© 2011 IBM Corporation

XMLtable can be used to go from XML to relational, while XMLelement is to go from

relational to XML.

51

Information Management

Agenda

* Overview
* Inserting XML data
* XPath
* XQuery
* Querying XML data using SQL/XML
HH * Querying XML data using XQuery
* Update & Delete operations with XML
* XML Indexes
* XML Schema Validation
e Other XML support

ek

© 2011 IBM Corporation

52

Information Management

Two worlds

SQL/XML
Standards

1 r &
s

XQuery
Standard

© 2011 IBM Corporation

Let's now talk about the second part, which is how to query XML data using the XQuery

standard

53

Information Management

XMLCOLUMN

= xmilcolumn is a function with a parameter that identifies the table name
and column name of an XML column.

= Simple XQuery to return customer contact data:

xquery
db2-fn:xmlcolumn('CLIENTS.CONTACT")

= Adding an additional filtering predicate

xquery
db2-fn:xmlcolumn
(CLIENTS.CONTACT")/Client/Address|zip="95116 "]

1 - e A CA - A - CA i
/i i o © 2011 IBM Corporation
e lon %

In XQuery, everything has to be prefixed with the keyword XQuery. As said earlier, if you
don’t put this keyword, DB2 will assume it's SQL.

The XMLCOLUMN function is used to retrieve all the content of the XML column, so this
actually will be equivalent to issuing a select CONTACT from clientsif | am just using SQL.

However, in SQL that's all | can do with XML, that it, SQL can let me retrieve the entire
XML document, but not just part of it. With XMLCOLUMN function, you can retrieve part of
the XML document.

54

Information Management

XMLCOLUMN - More examples

* FLWOR expression with XMLCOLUMN to retrieve client fax data:
xquery
for $y in db2-fn:xmlcolumn('CLIENTS.CONTACT")/CIi ent/fax
return $y

= Sample output:
<fax>4081112222</fax>

<fax>5559998888</fax>

= Querying DB2 XML data and returning results as HTML
xquery
 {

for $y in db2-fn:xmlcolumn('CLIENTS.CONTACT")/Clien t/Address
order by $y/zip
return {$y}

}

1 - e b CA - A - CA i
/ \ © 2011 IBM Corporation
e e X

This is another example using the XMLCOLUMN function inside a FLWOR expression (at
the top)

At the bottom you have another FLWOR expression, and the return is using HTML
() combined with XML

55

Information Management

XMLCOLUMN - More examples

<|i>

<address>
<street>9407 Los Gatos Blvd.</street>
<city>Los Gatos</city>
<state>ca</state>
<zip>95302</zip>

</address>

<Address>

<street>4209 El Camino Real</street>
<city>Mountain View</city>

<state>CA</state>
<zip>95302</zip>
</address>

I

This is the sample output of the previous example

© 2011 IBM Corporation

56

Information Management

SQLQUERY: Embedded SQL with XQuery

= A function which executes a SQL query and returns only the selected
data

" The result set from the query passed to db2-fn:sqglquery must return
XML data

= This XML data can then be further processed by XQuery

xquery
for $y in
db2-fn:sqlquery(’ select comments from items where srp > 100')/Comments/Comment
where $y/ResponseRequested="Yes'
return (
<action>
{$y//ProductID}
{$y//CustomerID}
{$y//Message}
</action>

)

1 _ _ _ PIAlE) c CA i
ﬂ A P@FTE RS ©2011 IBM Corporation

SQLQUERY allows you to embed SQL inside XQuery. So before, when working with
SQL/XML you would start with a SELECT and within this SELECT you would invoke
XMLexists, XMLquery etc, so XML functions where embedded in SQL.

Now what | am using is XQuery at the top level and I'm embedding SQL.

This query is selecting comments from items where srp>100, and from there it will maybe
select, let’'s say we have 200 rows. The comments column must be an XML column. From
there we go to / Comrent s/ Comrent , so | am going down navigating the elements. Of
course these names may not be very good for illustration purposes, but these are different

elements, then from there | continue with the XQuery.

57

Information Management

Agenda

* Overview

* Inserting XML data

* XPath

* XQuery

* Querying XML data using SQL/XML

* Querying XML data using XQuery
HH[‘ * Update & Delete operations with XML

* XML Indexes

* XML Schema Validation

e Other XML support

s ek

© 2011 IBM Corporation

58

Information Management

DELETE operations with XML

= Deletes a row based on a condition that uses an XML element
= Use a SQL DELETE statement

= A DELETE first searches for the document, and then deletes it.
The search part can be done using the same SQL/XML functions
as when querying data

delete from clients
where
xmlexists (‘$c/Client/Address|zip="95116"]'
passing CLIENTS.CONTACT as "c")

* To delete XML data, see the SQL UPDATE statement ne xt

1 - e b CA - A - CA i
/ \ © 2011 IBM Corporation
e e X

To delete XML data, you can simply use SQL and use an update statement where the XML
column is set to NULL..

If you want to delete rows of a table based on a condition found in the XML documents, you
can use the SQL/XML functions discussed earlier. An example of this case is shown
above.

If you want to delete part of the XML document, what you are actually doing is “updating”
the XML document, and this is covered in the “Update” section using the TRANSFORM
expression.

59

Information Management

UPDATE operations with XML

= Use the TRANSFORM

expression

= Let's say you
have this XML
document (From

SAMPLE
database,

purchaseorder

® e XML Document Viewer - PORDER

Tree View| source view|

=-48 PORDER

=-[2] PurchaseOrder
-{=) Palium
-{2) OrderDate
(=) Status
=RFd
= partid
B 100-100-01
#-[=] name

=[] quantity

#-[2] price

Expantd Al

Collapse Al

Find. ..

Freferences. ..

Legend
(=) Attribute
L& Document
(=] Element
B Text

=[] partid
table) B 100-101-01

"E name
-] guantity
#-[2] price

E|"'
= partid

B 100-201-01
#-[e] name

=[] quantity

w-{a] price

ﬂ B m ©2011 IBM Corporation

This is an example to show how UPDATE operations work in XML. Here you can see there
are three item elements in this XML document.

Information Management

UPDATE example

= Adding an element to the end of the document

UPDATE purchaseorder SET porder =

xmiquery(’ transform
copy $po := $order
modify do insert

document { <item>
<partid>100-103-01</partid>
<name>Snow Shovel, Super Deluxe 26 i nch</name>
<quantity>4</quantity>
<price>49.99</price>
</item>

}

into $po/PurchaseOrder

return $po’

passing purchaseorder.porder as "order")

WHERE poid=5012;

1 - e b CA - A - CA i
/ \ © 2011 IBM Corporation
e e X

Using this example, we are updating the XML document to add one more item.

61

Information Management

UPDATE example

XML Document Viewer - PORDER x|
= After addlng the Tree View | Saurce view
element to the end: =8 PORDER Expand Al |
=-{=] PurchaseCrder
(=) PoMum Collapse All |
OrderDate _
Status Find... |
-] item Preferences |
w-[a] item
=[] it Legend
b (*) Attribute
= [2] partid
B 100-103-01 [Document
IiE|---EI name (=] Element
B Snow Shovel, Super Deluxe 26 inch | [2) Text
=-[=] quantity
=-[=] price
B 4393
Aftribute view
0of O ftems displayed | 1% Zp <> 60 I ¥ ‘ Default ... “ Viewl

Close I Help |

© 2011 IBM Corporation

This figure now shows 4 items after executing the update, where the last item added has
been expanded, while the other are collapsed.

Information Management

UPDATE example

= Deleting an XML element when updating

= For example, deleting element with partid: 100-201- 01

UPDATE purchaseorder SET porder =

xmlquery(' transform
copy $po := $order
modify do delete
$po/PurchaseOrder/item[partid = "100- 201-01"]
return $po’

passing porder as "order")
WHERE poid=5012;

X e o © 2011 IBM Corporation
HR7SeS

This is another example, but in this case we are deleting an element in the XML document.

63

Information Management

UPDATE example

™ XML Document Viewer - PORDER x|

Tree ViEWl Source view

= After deleting element S POROER e Bpand Al |
with partid:

= Polum Collapse Al |
100-201-01

Find... |
Preferences... |

Legend
@[] name (=) Attribute
-] quantity @

@[price Document
=[] item [=] Element
B Bl Text

- SEar-101-01
w-[name
@-{=] guantity
@[] price
Ep[]i b

B 100-103-01
name

#-{2] quantity

-] price

Attribute View
Local Name - | Type s | value ¢ | Unnormalized vz
1| 3|

|
0 of 0 items displayed ‘ W Zode B0 I ‘ Default ... ‘| “iew

© 2011 IBM Corporation

This show the element was deleted.

64

Information Management

UPDATE operations with XML

= Many other things you can do with TRANSFORM:
» Replace the value of an element
» Replace the value of an attribute
» Replace an element and attribute
» Rename an element and attribute

» etc.

= Examples were taken from:
C:\Program Files\IBM\SQLLIB\samples\xml\xquery\clp\xupdate.db2

1 r &
s

© 2011 IBM Corporation

65

Information Management

Agenda

* Overview

* Inserting XML data

* XPath

* XQuery

* Querying XML data using SQL/XML

* Querying XML data using XQuery

* Update & Delete operations with XML
HH ¢ XML Indexes

* XML Schema Validation

e Other XML support

e

© 2011 IBM Corporation

66

Information Management

XML Indexes
create table customer (info XML);
create unique index idx1 on customer

(info) generate key using <customerinfo Cid="1004">

xmlpattern ' Icustomerinfo/@Cid ' <name>Matt Foreman </name>
<addr country=" Canada">
as sql double; <street> 1596 Baseline </street>

<city> Toronto </city>

<state> Ontario </state>

<pcode> M3Z-5H9</pcode>
</addr>
<phone type="work"> 905-555-4789</phone>
<phone type="home"> 416-555-3376</phone>
<assistant>

<name>Peter Smith </name>

<phone type="home"> 416-555-3426</phone>
</assistant>

</customerinfo>

1 B 7/ — S oJF J i
‘II"" P ©2011 IBM Corporation

You can define XML indexes based on a Xpath expression.

For example, if you access the Cid attribute constantly, then you can create an XML index
just to that particular attribute. You will do it using this syntax: create unique index, etc.,

generate key using XMLpattern,and then you put an Xpath statement to go to that attribute.

The other examples are similar where the Xpath is what changes.

67

Information Management

XML Indexes

create table customer (info XMD);

<customerinfo Cid=" 1004">
| <name>Matt Foreman</name>|
<addr country=" Canada">
<street> 1596 Baseline </street>
<city> Toronto </city>
<state> Ontario </state>
<pcode> M3Z-5H9</pcode>
generate key using </addr>
+ <phone type="work"> 905-555-4789</phone>
<phone type="home"> 416-555-3376</phone>
as sgl varchar(40); <assistant>
<name>Peter Smith </name>
<phone type="home"> 416-555-3426</phone>
</assistant>

create index idx2 on customer (info)

xmlpattern ' /customerinfo/name[1]

</customerinfo>

1 r _ Dla J tj
IIIIII ‘A S8, ©2011 IBM Corporation

68

Information Management

XML Indexes

create table customer (info XMU);

<customerinfo Cid=" 1004">
| <name>Matt Foreman</name>|
<addr country=" Canada">
<street> 1596 Baseline </street>
<city> Toronto </city>
<state> Ontario </state>
<pcode> M3Z-5H9</pcode>
</addr>
<phone type="work"> 905-555-4789</phone>
<phone type="home"> 416-555-3376</phone>

<agsistant>

<phone type="home"> 416-555-3426</phone>
</assistant>

generate key using </customerinfo>

create index idx3 on customer (info)

xmlpattern ' //Iname
as sqgl varchar(40);

1 r _ Dla J tj
IIIIII ‘A S8, ©2011 IBM Corporation

Information Management

XML Indexes

create index idx4 on customer (info)

generate key using <customerinfo Cid="_[1004"'

xmlpattern ' Iitext() ' <namex Matt Foreman</name>
<addr country=" >

as sgl varchar(40); <stree alined/street>

<state>

<pcode> /pcode>
</addr>
<phone type="work"> [05-555- phone>

<phone type="home"> H16-555-3376</phone>
<assistant>
<name>w</namn>
<phone type="home"> |4-1-6-555-34-26=|/phone>
</assistant>
</customerinfo>

© 2011 IBM Corporation

Here the //text means you want to create an index on all the values, but that’s not
recommended because you are creating an index that is too big. An analogy would be to
this: if you are working on a table and creating a relational index, it’s like creating an index
on all the columns of the table, and that's not recommended. It would be too big, so when
you do insert, update or delete, you will also update the index, and that will cause more
performance issues.

Information Management

Agenda

* Overview
* Inserting XML data
* XPath
* XQuery
* Querying XML data using SQL/XML
* Querying XML data using XQuery
* Update & Delete operations with XML
* XML Indexes
HH[‘ * XML Schema Validation
e Other XML support

ek

© 2011 IBM Corporation

71

Information Management

XML Schema validation

= XML Schemas are supported using “XML Schema reposi tories”

= To validate based on an XML Schema you can:
» Use the XMLVALIDATE function during an INSERT
» Use a BEFORE Trigger

= To test if an XML document has been validated, you can use the
“IS VALIDATED?” predicate on a CHECK constraint

1 | " — I plAale) - CA i
‘""II ?f‘ : il s © 2011 IBM Corporation

You can perform validation of your XML document using XML schemas which can be
stored in XML Schemas repositories in the database.

You can use the XMLVALIDATE function in your insert statement or a BEFORE trigger to
validate against XML Schemas you registered and stored in the XML Schema repository
and that would done per row.

A CHECK constraint, using the IS VALIDATED predicate can be used to detect if a given
column has been validated using XMLvalidate.

72

Information Management

Validating with an XML schema (example)

INSERT INTO t1 VALUES(xmlvalidate (xmlparse(document('<?xml
version="1.0" encoding="UTF-8"?>

<po:PurchaseOrder xmins:po="http://www.test. com/po">
<Header>
<ld>1</ld>

</Header>
<ltems>

<[tem>
</ltem>
</ltems>

<Customer type="regular">

</Customer>
</po:PurchaseOrder>")) ACCORDING TO XMLSCHEMA ID order));

1 ‘
s ek

© 2011 IBM Corporation

/|

d @

DROP TABLE t1;
CREATE TABLE t1 (po xml);

INSERT INTO t1 VALUES(xmlvalidate (xmlparse(document('<?xml version="1.0" encoding="UTF-8"?>
<po:PurchaseOrder xmlIns:po="http://www.test.com/po">
<Header>
<ld>1</ld>
<date>2004-01-29</date>
<description>purchase order</description>
<value>20</value>
<status>shipped</status>
</Header>
<ltems>
<ltem>
<ltemDescription color="red" weight="5">
<Name>Widget C</Name>
<SKU>1</SKU>
<Price>30</Price>
<Comment>no comment</Comment>
</ltemDescription>
<NumberOrdered>1</NumberOrdered>
</ltem>
</ltems>
<Customer type="regular">
<Name>Manoj K Sardana</Name>
<Address>ring road, bangalore</Address>
<Phone>918051055109</Phone>
<email>msardana@in.ibm.com</email>

</Customer>

</po:PurchaseOrder>")) ACCORDING TO XMLSCHEMA ID order));

Information Management

pureXML schema flexibility

* Document validation for zero, one, or many schemas per XML column:
Always Well Formed XML

(&) (b) (€) (€)

~
~

No Schema One Schema Schema V1 Doc uments Any mix you want!
& Schema V2 w/ and w/o
schema
Most databases only support (a) and (b). DB2 allow s (a) through (e).

1 : _ 1l) c o, i

This shows you can validate different rows per XML column using different XML
schemas

74

Information Management

Agenda

* Overview

* Inserting XML data

* XPath

* XQuery

* Querying XML data using SQL/XML

* Querying XML data using XQuery

* Update & Delete operations with XML
* XML Indexes

* XML Schema Validation

-

Other XML support

© 2011 IBM Corporation

75

Information Management

Other XML support

= Based-table inlining and compression of small XML
documents

= Can transform XML documents using XSLT functions

= Compatible XML Schema evolution using the UPDATE
XMLSCHEMA command

= pureXML supported for UNICODE or non-UNICODE
databases

- Annotated XML Schema Decomposition

/ _Bin .,h © 2011 IBM Corporation
ha @

Normally, XML is stored in different object, and in the table we have a pointer to this
object. Base table inlining and compression of small XML documents means that if the
XML document is not big and it can fit into the same table then DB2 will store it with the
base table and row compression can apply also to XML documents.

There is support for XSLT functions, so you can transform your XML documents to provide
a different format like HTML format. You can use CSS (Cascading style sheets) so the
data is displayed nicely.

Compatible XML schema evolution using the UPDATE XMLSCHEMA command means
that your schema can be changing constantly through time. Maybe a string had a given
size, now it has changed; now it is larger, so if you run this update XML schema, as long as
it is not a completely different schema, then the schema can evolve.

We still support XML schema decomposition, if you want to store XML not using pureXML,
but actually decomposing the XML into small pieces and storing each piece in tables.

/6

Information Management

Development support for XML data

Cor C++

SQL

COBOL
Procedures ’ ' '

Ruby » ‘Java
Perl ’ . ‘ C# and Visual Basic

PHP

ek

pureXML is supported with any of these languages. All drivers have been
modified/updated for this support

© 2011 IBM Corporation

77

Information Management

Thank you!

Use the forum in the db2university.com course AAOOLEN if you have technical questions
about the materials covered in this course. Fellow students, faculty and IBMers can help
you!

78

