Information Management

DB2 Application Development overview

© 2011 IBM Corporation

Information Management

Agenda

= DB2 Application Development overview
= Server-side development

» Stored Procedures
» User-defined functions

» Triggers
= Client-side development

» Embedded SQL

» Static vs. Dynamic SQL

» CLI/ODBC

» JDBC / SQLJ / pureQuery

© 2011 IBM Corporation

Information Management

Supporting reading material & videos

* Reading materials
* Getting started with DB2 Express-C eBook

* Chapter 14: Introduction to DB2 application development

* Getting started with IBM Data Studio for DB2 eBook

* Chapter 5: Developing SQL Stored Procedures
* Chapter 7: Developing user-defined functions

* Getting started with DB2 Application Development eBook
* Chapter 3, section 3.6: Triggers: The big picture
* Videos

* db2university.com course AAOOLEN

* Lesson 12: DB2 application development

© 2011 IBM Corporation

Information Management

Agenda

HH[‘ = DB2 Application Development overview

© 2011 IBM Corporation

Information Management

DB2 Application Development Overview

Server-side development (at the DB2 database server):
‘ » Routines (Stored Procedures, UDFs)
» Database objects (Triggers)

= Client-side development (at the client):
» May require a DB2 client or driver to be installed
» Database applications (in C/C++, .NET, Cobol, Java, etc)

e
00

1 i
T e ek

DB2 application development is divided in two parts, the first part talks about servier-side
development (Stored procedures, UDFs, etc), and the second part talks about Client-side
development (eg: Accessing DB2 from a Java program, for example)

© 2011 IBM Corporation

Information Management

DB2 Application Development Overview

Client Server

Development Tools

IBM Data Studio, IDA, RSA, RAD, Visual
Studio, ZendCore

Programming Language

Database

DB Application Programming
Interface (API) Stored User-defined
Procedures Functions
Embedded static & dynamic SQL in C/C++,
Cobol, Fortran, REXX, ODBC/CLI,

JDBC/SQLJ, ADO, ADO.NET, OLE DB, PHP,
ROR, etc.

IBM Data Server Client / Driver

Triggers

© 2011 IBM Corporation

In the figure, the left side represents a client machine where an application programmer
develops and runs his program. In this client machine, in addition to the operating system,
an IBM Data Server Client may be installed depending on the type of application being
developed. An IBM Data Server client includes the required connection drivers such as the
JDBC drivers and the ODBC/CLI drivers. These drivers can also be downloaded
independently by visiting the IBM DB2 Express-C Web site at ibm.com/db2/express

Using programming tools such as IBM Data Studio, InfoSphere Data Architect (IDA),
Rational Software Architect (RSA), Rational Application Developer (RAD), and so on, you
can develop your application in your desired programming language. The API libraries
supporting these languages are also included with the IBM Data Server Client, so that
when you connect to a DB2 Server, all the program instructions are translated appropriately
using these APIs into the SQL or XQuery statements understood by DB2.

On the right side of the figure a DB2 server is illustrated containing one database. Within
this database there are stored procedures, user-defined functions and triggers. We
describe all of these objects in more detail in the next slides as we are concentrating on
this part first.

Information Management

DB2 Application Development Overview

Client Server

Development Tools

IBM Data Studio, IDA, RSA, RAD, Visual
Studio, ZendCore

Programming Language

Database

DB Application Programming
Interface (API) Stored User-defined
Procedures Functions
Embedded static & dynamic SQL in C/C++,
Cobol, Fortran, REXX, ODBC/CLI,

JDBC/SQLJ, ADO, ADO.NET, OLE DB, PHP,
ROR, etc.

IBM Data Server Client / Driver

Triggers

© 2011 IBM Corporation

In the figure, the left side represents a client machine where an application programmer
develops and runs his program. In this client machine, in addition to the operating system,
an IBM Data Server Client may be installed depending on the type of application being
developed. An IBM Data Server client includes the required connection drivers such as the
JDBC drivers and the ODBC/CLI drivers. These drivers can also be downloaded
independently by visiting the IBM DB2 Express-C Web site at ibm.com/db2/express

Using programming tools such as IBM Data Studio, InfoSphere Data Architect (IDA),
Rational Software Architect (RSA), Rational Application Developer (RAD), and so on, you
can develop your application in your desired programming language. The API libraries
supporting these languages are also included with the IBM Data Server Client, so that
when you connect to a DB2 Server, all the program instructions are translated appropriately
using these APIs into the SQL or XQuery statements understood by DB2.

On the right side of the figure a DB2 server is illustrated containing one database. Within
this database there are stored procedures, user-defined functions and triggers. We
describe all of these objects in more detail in the next slides as we are concentrating on
this part first.

Information Management

Agenda

= Server-side development

HH[‘ » Stored Procedures

>

>

© 2011 IBM Corporation

Information Management

Stored procedures overview

Client Application

Network

© 2011 IBM Corporation

This figure illustrates how Stored Procedures work and why they are needed.

At the top left corner of the figure, you see several SQL statements executed one after the
other. Each SQL is sent from the client to the data server, and the data server returns the
result back to the client. If many SQL statements are executed like this, network traffic
increases.

Information Management

Stored procedures overview

Client Application

Network

© 2011 IBM Corporation

On the other hand, at the bottom, you see an alternate method that incurs less network
traffic. This second method calls a stored procedure myproc stored on the server, which
contains the same SQL,;

10

Information Management

Stored procedures overview

Client Application

Network

© 2011 IBM Corporation

and then at the client (on the left side), the CALL statement is used to call the stored
procedure.

11

Information Management

Stored procedures overview

Client Application

© 2011 IBM Corporation

This second method is more efficient, as there is only one call statement that goes through
the network, and one result set returned to the client.

Stored procedures can also be helpful for security purposes in your database. For
example, you can let users access tables or views only through stored procedures; this
helps lock down the server and keep users from accessing information they are not
supposed to access. This is possible because users do not require explicit privileges on the
tables or views they access through stored procedures; they just need to be granted
sufficient privilege to invoke the stored procedures.

12

Information Management

Stored procedures overview

= Usually contain one or more SQL statements as well as
procedural (business) logic

= Executed and managed by DB2 (server-side objects)

= Can be written using SQL PL, C/C++, Java, Cobol, CLR
supported languages, OLE, PL SQL, etc.

= Benefits for using stored procedures include:
» Centralized business logic that promotes code re-use
» Improved security
» Improved performance

= This workshop focuses on SQL PL procedures because of
their popularity, good performance and simplicity

X e o © 2011 IBM Corporation
HR7SeS

13

Information Management

Creating your first stored procedure

* Using the Command Line Processor:

db2=> connect to sample
db2=> create procedure pl begin end

* Using the IBM Data Studio
(Demo)

o0

ney © 2011 IBM Corporation
(X I

1 i
e ek

The procedure created using the CLP is doing nothing. It's used for illustration purposes.

Note you need to connect to the database first, because that's where the stored procedure
resides.

14

Information Management

Basic stored procedure structure

CREATE PROCEDURE proc_name [({optional parameters})]
[optional procedure attributes]
<statement>

[optional parameters]

IN Input parameter

ouT Output parameter

INOUT Input and Output parameter
Example:

CREATE PROCEDURE proc(IN p1 INT, OUT p2 INT, INOUT p3 INT)

© 2011 IBM Corporation

15

Information Management

Basic stored procedure structure

[optional procedure attributes]
LANGUAGE SQL

RESULT SETS <n> (required if returning result sets)

<statement> is a single statement, or a set
of statements grouped by BEGIN [ATOMIC] ... END

© 2011 IBM Corporation

LANGUAGE SQL

This attribute indicates the language the stored procedure will use. LANGUAGE SQL is

the default value. For other languages, such as Java or C use LANGUAGE JAVA or
LANGUAGE C, respectively.

RESULT SETS <n>

This is required if your stored procedure will be returning n result sets.

16

Information Management

Basic stored procedure structure: Compound statements

B BEGIN [ATOMIC] j Optionally atomic
<declare variables> —
<declare conditions>
<declare statements> Declarations
Compound <declare cursors>
Statement <declare handlers> —
<logic > j Logic -
Can contain other
u END compound stmts

1 I 1 g T plale Imentati
‘IIIIII ‘b SR NS © 2011 IBM Corporation

A compound statement in a stored procedure is a statement consisting of several
procedural instructions and SQL statements encapsulated by the keywords BEGIN and
END. When the ATOMIC keyword follows the BEGIN keyword, the compound statement is
treated as one unit, that is, all of the instructions or statements in the compound statement
must be successful in order for the entire compound statement to be successful. If one of
the statements is not, then everything is rolled back.

Note: The order must be followed as shown.

For example, if you try to declare a cursor before variables, you will get errors.

17

Information Management

Variable declaration & assignments

DECLARE var_name <data type> [DEFAULT value]

Examples:
DECLARE templ SMALLINT DEFAULT O;
DECLARE temp2 VARCHAR(10) DEFAULT 'hello’;
DECLARE temp3 DATE DEFAULT '1998-12-25';

SET var_name = value

Examples:

*SET total = 100;
>™Same as VALUES(100) INTO total;

*SET total = NULL,
™any variable can be set to NULL

*SET total = (select sum(cl) from T1);
™ Condition is raised if more than one row

*SET first_val = (select c1 from T1 fetch first1ro w only)
>fetch only the first row from a table

*SET sch = CURRENT SCHEMA,

1 i
s e ek

© 2011 IBM Corporation

18

Information Management

Example: Stored procedure with parameters

CREATE PROCEDURE P2 (IN v_pl1 INT,
INOUT v_p2 INT,
OUT v_p3INT)
LANGUAGE SQL
SPECIFIC myP2
BEGIN
-- my second SQL procedure
SETv p2=v_p2+v _pl;
SET v _p3=v_pl;
END

To call the procedure from the Command Line Process or:
db2=> call P2 (3, 4, ?)

1 I . S— S C PDIAlE) - Ch i
‘""II 4 N B8 s © 2011 IBM Corporation

Note:

The question mark is required when calling a stored procedure from an application (other
than Data Studio) for OUT parameters.

19

Information Management

Example: Stored procedure processing a cursor

CREATE PROCEDURE sum_salaries(OUT sum INTEGER)
LANGUAGE SQL
BEGIN
DECLARE p_sum INTEGER,;
DECLARE p_sal INTEGER;
DECLARE SQLSTATE CHAR(5) DEFAULT '00000";
DECLARE ¢ CURSOR FOR
SELECT SALARY FROM EMPLOYEE;
SET p_sum =0;
OPEN c;
FETCH FROM ¢ INTO p_sal;
WHILE(SQLSTATE ='00000") DO
SET p_sum =p_sum + p_sal;
FETCH FROM ¢ INTO p_sal;
END WHILE;
CLOSE c;
SET sum = p_sum,;
END

20

Information Management

SQLCODE and SQLSTATE

* Access requires explicit declaration:

*DECLARE SQLSTATE CHAR(5);
*DECLARE SQLCODE INT;

* Can be declared ONLY at outermost scope and
automatically set by DB2 after each operation

* SQLCODE *SQLSTATE
*SQLSTATE '00000" = Success

*SQLSTATE '02000" = Not found
*SQLSTATE '01XXX' = Warning
*Everything else = Exception

°= 0, successful.
*> 0, successful with warning
*< 0, unsuccessful
°= 100, no data was found.
°i.e. FETCH statement returned no data

© 2011 IBM Corporation

21

Information Management

Example: Calling a stored procedure from Java application

try
{
/I Connect to sample database
String url = “jdbc:db2:sample”;
con = DriverManager.getConnection(url);

CallableStatement cs = con.prepareCall(“CALL
trunc_demo(?, ?)”);

I register the output parameters
callStmt.registerOutParameter(1, Types.VARCHAR);
callStmt.registerOutParameter(2, Types.VARCHAR);

cs.execute();

con.close();
} C:\Program Files\IBM\SQLLIB\samples

More examples at:

catch (Exception e)

{

[* exception handling logic goes here */

B

d ®

© 2011 IBM Corporation

22

Information Management

>

» User-defined functions
3

© 2011 IBM Corporation

23

Information Management

User-defined functions

* Functions always return a value

= Some built-in functions already exist out-of-the-box
» Eg: SUM(), AVG(), DIGITS(), etc.

= Can create UDFs in:
» SQL PL, C/C++, Java, CLR, OLE, etc.

» In this workshop, we focus on SQL PL functions because of their
simplicity and popularity

1 I . S— S C PDIAlE) - Ch i
‘""II 4 N B8 s © 2011 IBM Corporation

A user-defined function (UDF) is a database application object that maps a set of input
data values into a set of output values. For example, a function may take a measurement
in inches as input, and return the result in centimeters.

DB2 supports creating functions using SQL PL, PL/SQL, C/C++, Java, CLR (Common
Language Runtime), and OLE (Object Linking and Embedding) (i.e: .NET technologies).

You can think of a UDF as a way to allow users to extends the SQL language to their
needs. You invoke functions from a SELECT or a VALUES statement

24

Information Management

Type of functions

= Scalar functions

» Return a single value

» Cannot change database state (i.e. no INSERT, UPDATE, DELETE
statements allowed)

- Example: COALESCE(), SUBSTR()
= Table functions
» Return values in a table format
» Called in the FROM clause of a query

» Can change database state (i.e. allow INSERT, UPDATE, DELETE
statements)

— Example: SNAPSHOT_DYN_SQL(), MOREADALL()
= Others type of functions (not covered in this cours e):

» Row functions
» Column functions

1 I S I plAale) - CA i
\IIIIII Pf ! <28, g © 2011 IBM Corporation

25

Information Management

Scalar functions

= Scalar functions take input values and return a single value

" They cannot be used to modify table data

CREATE FUNCTION deptname(p_empid VARCHAR(6))
RETURNS VARCHAR(30)
SPECIFIC deptname
BEGIN ATOMIC
DECLARE v_department_name VARCHAR(30);
DECLARE v_err VARCHAR(70);
SET v_department_name = (
SELECT d.deptname FROM department d, employ
WHERE e.workdept=d.deptno AND e.empno=
SET v_err ='Error: employee ' || p_empid || '
IF v_department_name IS NULL THEN
SIGNAL SQLSTATE '80000"' SET MESSAGE_TEXT=v_
END IF;
RETURN/_department_name;
END

ee e
p_empid);

was not found";

err;

L= @]
7%

© 2011 IBM Corporation

In the above listing, the function name is deptname and it returns the department number

of an employee based on the employee id.

26

Information Management

Invoking a scalar function

= Scalar UDFs can be invoked in SQL statements wherever a scalar
value is expected, or in a VALUES clause

» SELECTDEPTNAME(‘000010') FROMSYSIBM.SYSDUMMY'1

» VALUES DEPTNAMED00010’)

1 ‘
s

/|

d @

© 2011 IBM Corporation

A scalar UDF can be invoked using the VALUES statement. It can also be invoked from a
SQL statement wherever a scalar value is expected. For example, try the following from
the DB2 Command Window or from a Linux or UNIX terminal:

db2 "values (deptname ('000300"))"

or
db2 "select (deptname (‘000300")) from sysibm.sysdummy1"

Note in the second example that the SYSIBM.SYSDUMMY1 is used. This is a special
dummy table with one row and one column. It is used to ensure that only one value is
returned. If you try the same SELECT statement with any other table that had more rows,
the function would be invoked as many times as the table has.

27

Information Management

Table UDFs

= Returns a table
= Used in the FROM clause of a query

= Typically used to return a table and keep an audit record

Example: A function that enumerates a set of employees of a department

CREATE FUNCTION getEnumEmployee(p_dept VARCHAR(3))
RETURNS TABLE
(empno CHAR(6),
lastname VARCHAR(15),
firstnme VARCHAR(12))
SPECIFIC getEnumEmployee
RETURN
SELECT e.empno, e.lastname, e.firstnme
FROM employee e
WHERE e.workdept=p_dept

i | _
7%

© 2011 IBM Corporation

Table functions return a table of rows. You can call them using the FROM clause of a
guery. Table functions, as opposed to scalar functions, can change the database state;
therefore, INSERT, UPDATE, and DELETE statements are allowed. Some built-in table
functions are SNAPSHOT_DYN_SQL() and MQREADALL(). Table functions are similar to
views, but since they allow for data modification statements (INSERT, UPDATE, and
DELETE) they are more powerful. Typically they are used to return a table and keep an
audit record.

28

Information Management

Calling a table UDFs

* Used in the FROM clause of an SQL statement

* The TABLE() function must be applied and must be aliased.

SELECT * FROM
TABLE (getEnumEmployee('EOL") T

TABLE() function alias

X e o © 2011 IBM Corporation
HR7SeS

A table UDF has to be invoked in the FROM clause of an SQL statement since it returns a
table. The special TABLE() function must be applied and an alias must be provide after its
invocation.

29

Information Management

>
>
» Triggers

© 2011 IBM Corporation

30

Information Management

Triggers

= A trigger is a database object defined on a table and fired
when an INSERT, UPDATE, or DELETE operation is
performed.

= Activate (“fire”) automatically

= Operations that cause triggers to fire are called triggering
SQL statements

X e o © 2011 IBM Corporation
HR7SeS

Triggers are database objects associated with a table that define operations to occur when
an INSERT, UPDATE, or DELETE operation is performed on the table. Triggers are
activated automatically. The operations that cause triggers to fire are called triggering SQL
statements.

31

Information Management

Types of triggers

= BEFORE
» Activation before row is inserted, updated or deleted

= AFTER

» Activated after the triggering SQL statement has executed to
successful completion

= INSTEAD OF
» Defined on views

» Logic defined in the trigger is executed instead of the triggering
SQL statement

© 2011 IBM Corporation

32

Information Management

Example of a BEFORE trigger

_ CREATE TRIGGER default_class _end
oaliter for | NO CASCADE BEFORE INSERT ON cl_sched
new values | REFERENCING NEW ASn
FOR EACH ROW
MODE DB2SQL

WHEN (n. ending IS NULL))
/ SET n.ending= n. starting + 1 HOUR

optional _

WHEN if no.value
provided on
insert, column is
NULL

1 - e b CA - A - CA i
/ e \ © 2011 IBM Corporation
e fon X

The trigger default_class_end will be triggered before an INSERT SQL statement is
performed on the table CL_SCHED. This table is part of the SAMPLE database, so you
can create and test this trigger yourself while connected to this database. The variable n in
the trigger definition represents the new value in an INSERT, that is, the value being
inserted. The trigger will check the validity of what is being inserted into the table. If the
column ENDING has no value during an INSERT, the trigger will ensure it has the value of
the column STARTING plus 1 hour. To test the trigger you can do:

db2 insert into cl_sched (class_code, day, starting) values (‘abc',1,current time)

db2 select * from cl_sched

33

Information Management

Example of an AFTER trigger

* Similar to BEFORE triggers, except that INSERT, UPDATE and DELETE
are supported

" Prereq:
» CREATE TABLE audit (mytimestamp timestamp, comment varchar (1000))

CREATE TRIGGER audit_emp_sal
AFTER UPDATE OF salary ON employee
REFERENCINGOLD ASo NEW ASn
FOR EACH ROW

MODE DB2SQL

INSERT INTO audit VALUES (

CURRENT TIMESTAMP, ' Employee ' || 0. empno ||
salary changed from ' || CHAR(0. salary) || ' to
"|| CHAR n.salary) || ' by ' || USER)

L [J1d) c

The trigger audit_emp_sal is used to perform auditing on the column SALARY of the
EMPLOYEE table. When someone makes a change to this column, the trigger will be
activated to write the information about the changed made to the salary into another table
called AUDIT. The OLD as o NEW as n line indicates that the prefix o will be used to
represent the old or existing value in the table, and the prefix n will be used to represent
the new value coming from the UPDATE statement. Thus, o.salary represents the old or
existing value of the salary, and n.salary represents the updated value for the column
salary data.

34

Information Management

Example of an INSTEAD OF trigger

* |tis activated when performing changes to a view

* Prereq:
CREATE TABLE countries (id int, country varchar(50),
region varchar (50), ave rage_temp int)
CREATE VIEW view1 (id, continent, temperature) a S
SELECT id, region, average temp from coun tries

CREATE TRIGGER update_viewl
INSTEAD OF UPDATE ON viewl
REFERENCING OLD ASo NEWASN
FOR EACH ROW
MODE DB2SQL
BEGIN ATOMIC
UPDATE countries
SET region = n.region
WHERE region = 0.region;

© 2011 IBM Corporation

Instead of triggers are defined on views. Since views are defined dynamically using a
SELECT statement that accesses one or more tables, views cannot be updated. However,
using this type of trigger, you can give users the illusion that a view can be updated
because the logic defined in the trigger is executed instead of the triggering SQL
statement. For example, if you perform an update operation on a view, the instead of
trigger will be activated to actually perform the update on the base tables that form the
view.

Triggers cannot be created from IBM Data Studio unless you use the “Script” folder. They
can be created from the Control Center or from the Command line tools (DB2 Command
Window, Command Line Processor)

35

Information Management

4
4
4

HH[‘ = Client-side development

4
>

© 2011 IBM Corporation

36

Information Management

DB2 Application Development Overview

Server-side development (at the DB2 database server
» Routines (Stored Procedures, UDFs)

» Database objects (Triggers)

= Client-side development (at the client):
‘ » May require a DB2 client or driver to be installed

» Database applications (in C/C++, .NET, Cobol, Java, etc)

):

© 2011 IBM Corporation

37

Information Management

Accessing DB2

Command Line
Processor

Commands

Interactive
SQL

Tools

IBM Data Studio

Optim Development
Studio

Optim Database
Administrator

Applications

APls

Embedded
SQL

Call Level
Interface

JAVA

SQL/API

DB2 Engine

)
i

© 2011 IBM Corporation

In the end, the SQL/API layer converts everything into SQL that DB2 can understand.

38

Information Management

Application development freedom

* Ruby on Rails &_l,jf.lu)f A’l'f]. ll'.lljl
= C/C++ (ODBC and Static SQL)

* JDBC and SQLJ WebSphere llf vTHON |

= Borland
- Python Ll Rational
" PHP Visual Studio.net -
= Perl Visual Studio
do\
= .NET languages AppFor.ge,_‘
metrowerks’ -
= OLE-DB w Borland .«
/ iﬁg’w Kylix

: \;Vglt_) Services E perlm

= MS Office: Excel, Access, Word

1 _ f SN S e plAale) - CA i
‘IIIII A ©2011 IBM Corporation
a Sl 1

39

Information Management

© 2011 IBM Corporation

40

Information Management

Embedded SQL

hello.sgc
#include <stdio.h>
#include <stdlib.h> hello.bnd Paskagil —
- - Only SQL, no bind hello.bnd > xecutable
int main(int argc, char** argv) ¢ code W'tir:]%crﬁfjtsio%ath
EXEC SQDBEGIN DECLARE \/
SECTION;
char dbname[15]; _ o
char userlD[8]; preconpile hello.sqc bindfile hello.exe needs the
8]; right package to run
EXEC SOIVEND DECLARE successfully
SECTION;
p t 1o a database */ hello.c hello.o hello.exe
EXEC SQDCONNECT TO Only C code, i N - Executabl
gﬁsm useriD Ly} noembedded (SRS | objectFile [k | EXQUEN
USING :psw; SQL

if (SQLCODE = 0) {
printf ("\n *** Error ***\n");

1 . _)1l) c Ci i
ﬂ A NP © 2011 IBM Corporation

Embedded SQL applications are applications where SQL is embedded into a host
language such as C, C++, or COBOL. The embedded SQL application can include static
or dynamic SQL.

In the figure, the C program hello.sqc contains embedded SQL. The embedded SQL API
for the C language uses EXEC SQL (highlighted in Figure 1.2) as a delimiter to allow the
PRECOMPILER that comes with DB2 to identify the SQL statements to be translated
versus the actual C code.

You may also note in the hello.sqc listing that some variables are prefixed with a colon, as
in :dbname, :userID, and :psw. These are called host variables. Host variables are
variables from the host language that are referenced in the embedded SQL statements.

Issuing the precompile command (also known as the prep command) with the bindfile
option generates two files, the hello.bnd bind file containing only SQL statements and the
hello.c file containing only C code. The bind file will be compiled using the bind command
to obtain a package that is stored in the database. A package includes the
compiled/executable SQL and the access path DB2 will follow to retrieve the data. To issue
the bind command, a connection to the database must exist. At the bottom of the figure,
the hello.c file is compiled and linked like any regular C program. The resulting executable
file hello.exe has to match the package stored in the database to successfully execute.

41

Information Management

4
4
4
4

© 2011 IBM Corporation

42

Information Management

Static SQL

= The SQL statement structure is fully known at precompile time.

SELECT lastname, salary FROM employee

= The names for the columns (lastname, firstname) and tables
(employee) referenced in a statement are fully known at
precompile time.

= Host variables values can be specified at run time (but their data type
must still be precompiled).

SELECT lastname, salary
FROM employee

WHERE firsthame = :fname

= You precompile, bind, and compile statically executed SQL statements
before you run your application.

= Static SQL is best used on databases whose statistics do not change a

eal. | plate Documentati
h DO g T ©2011 IBM Corporation

Static SQL statements are the ones where the SQL structure is fully known at precompile
time.

In this second example, a host variable :fname is used as part of an embedded SQL
statement. Though the value of the host variable is unknown until runtime, its data type is
known from the program, and all the other objects (column names, table names) are fully
known ahead of time. DB2 software uses estimates for these host variables to calculate
the access plan ahead of time; therefore, this case is still considered static SQL.

You precompile, bind, and compile statically executed SQL statements before you run your
application. Static SQL is best used on databases whose statistics do not change a great
deal

43

Information Management

Dynamic SQL

= The SQL is built and executed at run-time.
SELECT ?, ? FROM ?

» The names for the columns and tables referenced in a statement are not
known until runtime.

= The access plan is determined at runtime.

» Normally static SQL performs better than dynamic SQL since the access
plan is calculated ahead of time

» For tables whose statistics change often, dynamic SQL may provide a more
accurate access plan.

= When working with dynamic SQL, use parameter markers (?) to
reduce the amount of times an access plan is calculated. (see
following example)

A

&

d @

© 2011 IBM Corporation

In this example, the names for the columns and table referenced by the statement are not
known until runtime. Therefore the access plan is calculated only at runtime and using the
statistics available at the time. These types of statements are considered Dynamic SQL
statements.

Some programming APIs, like JDBC and ODBC, always use dynamic SQL regardless of
whether the SQL statement includes known objects or not. For example, the statement
SELECT lastname, salary FROM employee has all the columns and table names known
ahead of time, but through JDBC or ODBC, you do not precompile the statements. All the
access plans for the statements are calculated at runtime.

44

Information Management

Dynamic SQL
= Example:

Case 1:

EXECUTE IMMEDIATELY SELECT name from EMP where dept =1
EXECUTE IMMEDIATELY SELECT name from EMP where de pt=2
Case 2:
strepy(hVStmtDyn, “SELECT name FROM emp WHERE de pt =7?");
PREPARE StmtDyn FROM :hVStmtDyn;
EXECUTE StmtDyn USING 1,
EXECUTE StmtDyn USING 2;

" |n case 1, each statement is treated as different SQL, therefore DB2 will
calculate the access plan for each.

" |n case 2, there is only one SQL statement:
“SELECT name FROM emp WHERE dept = ?*

* Therefore, the access plan will only be calculated once, and cached in memory.

1 ‘
s

/|

d @

© 2011 IBM Corporation

In general, two statements are used to treat a SQL statement as dynamic:
PREPARE: This statement prepares or compiles the SQL statement calculating the access

plan to use to retrieve the data

EXECUTE: This statement executes the SQL

Alternatively you can execute a PREPARE and EXECUTE in one single statement:
EXECUTE IMMEDIATELY

45

Information Management

Static vs. Dynamic SQL

= Embedded SQL applications support static & dynamic SQL
= Example of a static SQL in an embedded SQL C program

EXEC SQL SELECT name, dept
INTO :name, :dept
FROM staff WHERE id = 310;
printf(...)

= Example of a dynamic SQL in an embedded SQL C program

strcpy(hostVarStmtDyn,
"UPDATE staff SET salary = salary + 1000 WHERE dept =?");
EXEC SQL PREPARE StmtDyn FROM :hostVarStmtDyn;

EXEC SQL EXECUTE StmtDyn USING :dept;

1 _ _ _ PIAlE) c CA i
ﬂ A P@FTE RS ©2011 IBM Corporation

With respect to performance, static SQL will normally perform better than dynamic SQL
since the access plan in static SQL is performed at precompile time and not at runtime.
However, for environments where there is a lot of activity such as INSERTs and DELETEs,
the statistics calculated at precompile time may not be up-to-date, and therefore, the
access plan of the static SQL may not be optimal. In this case, dynamic SQL may be a
better choice, assuming a RUNSTATS command is frequently executed to collect current
statistics.

46

Information Management

HH[‘ » CLI/ODBC

© 2011 IBM Corporation

47

Information Management

CLI/ ODBC

= CLI = Call Level Interface

= DB2 CLI can be used as the ODBC Driver when loaded by an ODBC
Driver Manager

= DB2 CLI conforms to ODBC 3.51

© 2011 IBM Corporation

DB2 CLI conforms to ODBC 3.51 and can be used as the ODBC Driver when loaded by an
ODBC Driver Manager. The figure can help you picture DB2 CLI support for ODBC.

48

Information Management

CLI/ ODBC

" Torun a CLI/ODBC application all you need is the DB2 CLI driver.
This driver is installed from either of these:

» IBM Data Server Client
» IBM Data Server Runtime Client
» IBM Data Server Driver for ODBC and CLI

" To develop a CLI/ODBC application you need the DB2 CLI driver
and also the appropriate libraries. These can be found only on:

» IBM Data Server Client

o0

ney © 2011 IBM Corporation
(X I

1 i
e e ek

49

Information Management

CLI/ ODBC

= CLI/ODBC characteristics:

» The code is easily portable between several RDBMS vendors

» Unlike embedded SQL, there is no need for a precompiler or host
variables

» It runs dynamic SQL
» It is very popular

1 . e S . c PIA(E) C .
.72 e, © 2011 IBM Corporation

50

Information Management

>
>

» JDBC / SQLJ / pureQuery

© 2011 IBM Corporation

51

Information Management

JDBC / SQL / pureQuery

= JDBC characteristics:
» Like in ODBC, the code is easily portable between several RDBMS vendors
» Dynamic SQL
» Itis very popular

= SQLJ
» Embedded SQL in Java
» Static SQL
» Not that popular

= pureQuery
» Eclipse-based plug-in to manage relational data as objects
» IBM’s paradigm to develop Java database applications
» New since mid-2007, available with Optim Development Studio

1 : _ 1l) c o, i

Java Database Connectivity (JDBC) is a Java programming API that standardizes the
means to work and access databases. In JDBC the code is easily portable between several
RDBMS vendors. The only changes required to the code are normally which JDBC driver to
load and the connection string. JDBC uses only dynamic SQL and it is very popular.

SQLJ is the standard for embedding SQL in Java programs. It is mainly used with static
SQL, though it can inter-operate with JDBC as shown in the figure. Though it is normally
more compact than JDBC programs and provides better performance, it has not been
widely accepted. SQLJ programs must be run through a preprocessor (the SQLJ
translator) before they can be compiled.

In the figure (see next slide), a DB2 client may or may not be required depending on the
type of JDBC driver used.

pureQuery is an IBM Eclipse-based plug-in to manage relational data as objects.
Available since 2007, pureQuery can automatically generate the code to establish an
object-relational mapping (ORM) between your object oriented code and the relational
database objects. You start by creating a Java project with Optim™ Development Studio
(ODS), connect to a DB2 database, and then have ODS discover all the database objects.
Through the ODS GUI you can pick a table and then choose to generate the pureQuery
code which would transform any of the underlying relational table entities into a Java
object. Code is generated to create the relevant SQL statements and parent Java objects
that encapsulate those statements. The generated Java objects and the contained SQL
statements can be further customized. With pureQuery, you can decide at runtime whether
you want to run your SQL in static or dynamic mode. pureQuery supports both Java and
NET.

52

Information Management

JDBC / SQLJ — Supported drivers

Driver Driver Name Packaged Supports Minimum level of
Type as SDK for Java
required
Type 2 | DB2 JDBC Type 2 | db2java.zip | JDBC 1.2 and 1.4.2
Driver for Linux, JDBC 2.0
UNIX and Windows
(Deprecated)
Type 2 | IBM Data Server db2jcc.jar JDBC 3.0 1.4.2
and Driver for JDBC and sqlj.zip | compliant
Type 4 | and SQLJ
db2jcc4.jar | JDBC 4.0 and 6
and sqlj4.zip | earlier

= Type 2 drivers need to have a DB2 client installed
= Deprecated means it is still supported, but no long er enhanced

= Note that the same file (for example db2jcc.jar) su pports type 2 and 4
""" hf‘ @] R X © 2011 IBM Corporation

Though there are several types of JDBC drivers such as type 1, 2, 3 and 4; type 1 and 3
are not commonly used, and DB2's support of these types has been deprecated. For type
2, there are two drivers as we will describe shortly, but one of them is also deprecated.

Type 2 and type 4 are supported with DB2 software, as shown in the Table. Type 2 drivers
need to have a DB2 client installed, as the driver uses it to establish communication to the
database. Type 4 is a pure Java client, so there is no need for a DB2 client, but the driver
must be installed on the machine where the JDBC application is running.

As mentioned earlier and shown also in the Table, Type 2 is provided with two different
drivers; however the DB2 JDBC Type 2 Driver for Linux, UNIX and Windows, with filename
db2java.zip is deprecated.

Information Management

JDBC / SQLJ — Supported drivers

* db2java.zip, db2jcc.jar, sqlj.zip, db2jcc4.jar and sqlj4.zip are included with:
» IBM DB2 for Linux, UNIX and Windows servers
» IBM Data Server Client
» IBM Data Server Runtime Client

» IBM Data Server Driver for JDBC and SQLJ

1 I s PIAlE |mentati
IIIIII ‘A oo - -__ ©2011 IBM Corporation

When you install a DB2 server, a DB2 client or the IBM Data Server Driver for JDBC and
SQLJ, the db2jcc.jar and sqlj.zip files compliant with JDBC 3.0 are automatically added to
your classpath.

54

Information Management

Thank you!

Use the forum in the db2university.com course AAOOLEN if you have technical questions
about the materials covered in this course. Fellow students, faculty and IBMers can help
you!

55

