Information Management

Data concurrency and locking

© 2011 IBM Corporation

Information Management

Agenda

* Transactions
* Concurrency & Locking
* Lock Wait

* Deadlocks

© 2011 IBM Corporation

Information Management

Supporting reading material & videos

* Reading materials
* Getting started with DB2 Express-C eBook

* Chapter 13: Concurrency and locking

* Videos

* db2university.com course AAOO1EN

* Lesson 8: Data concurrency and locking

© 2011 IBM Corporation

If you need more details about this topic, refer to this supporting material:

- Chapter 13: Concurrency and locking of the book “Getting started with
DB2 Express-C 3rd Edition” and

- Lesson 8 of the db2university.com course AAOO1EN DB2 Academic
Training

Information Management

Agenda

HH[‘ * Transactions

© 2011 IBM Corporation

Information Management

What is a transaction?

Your bank account Your Mom’s bank account

Transfer $100 from your account to your Mom'’s accou nt:

- Debit $100 from your bank account (Subtract $100)
- Credit $100 to your mom's bank account (Add $100)

l - | S— PIA(E Imentati
(’ I‘ ¢ 4 = N © 2011 IBM Corporation
| S h N

A transaction could be better explained using this simple example: Let’s say, you have
access to two accounts at a bank; one is your bank account, and the other one is your
mom's bank account. In your bank account, there is a balance of one thousand dollars. In
your mom's account, there is a balance of two hundred dollars. Now, let's say you want to
transfer one hundred dollars from your account to your mom's account. Behind the scenes
100 hundred dollars will first be debitted from your account and then 100 dollars will be
creditted to your mom's account. However, what would happen if the 100 dollars from your
account is debitted and all of a sudden there is a power outage and the operation is not
completed?. You just lost 100 hundred dollars!. As you can tell, such scenario cannot be
allowed to happen in any real life application. To solve this problem, both operations, the
debit, and the credit should be treated as one single unit; as a transaction.

Information Management

What is a transaction? (cont'd)

* One or more SQL statements altogether treated as one
single unit

* Also known as a Unit of Work (UOW)

* A transaction starts with any SQL statement and ends with
a COMMIT or ROLLBACK

* COMMIT statement makes changes permanent to the
database

* ROLLBACK statement reverses changes

* COMMIT and ROLLBACK statements release all locks

1 I o - - e A CA - A > CA i
""" d s e © 2011 IBM Corporation
. ha @ B

So, a transaction is basically treating one or more SQL statements as one unit. If one
statement of a transaction fails, the entire transaction fails. A transaction is also known as
Unit of work (UOW). As we will see in the next slide, a transaction starts with any SQL
statement and ends with a COMMIT or ROLLBACK statement. A COMMIT statement
makes changes permanent to the database while a ROLLBACK statement reverses
changes. Both statements release all locks taken on rows.

Information Management

Example of transactions

First SQL statement
starts transaction

INSERT INTO employee VALUES (100, 'JOHN") \ emplID name

INSERT INTO employee VALUES (200, 'MANDY") 100
COMMIT |0 |
No changes
applied due to

ROLLBACK
emplD name
DELETE FROM employee WHERE name= MANDY '

UPDATE employee SET empID=101 where name=goriiv" ™" “
ROLLBACK

emplD name
UPDATE employee SET name='JACK' where emplD=100

COMMIT There is nothing to] “
rollback BT
ROLLBACEK x - .
OCU ,

© 2011 IBM Corporation

1 .
7%

For example in this slide you can see several transactions. For the first transaction, two
rows are inserted into the employee table. The transaction ends with the COMMIT
statement which guarantees these two rows (for 'JOHN' and 'MANDY") are stored in the
table. The next transaction starts with the DELETE statement and ends with a ROLLBACK.
Since it ends with a ROLLBACK, any changes made are not actually applied, and the table
remains exactly as it was before the transaction started. Then we have another transaction
that updates the name to be 'JACK' for empID=100. Since this transaction ends with a
COMMIT, the change is applied as highlighted in yellow in the slide. Finally, there is one
last short transaction consisting of a ROLLBACK. This transaction of one statement would
have no effect, since nothing can be rolled back at this time.

Information Management

Transactions — ACID rules

* Atomicity
* All statements in the transaction are treated as a unit.
* If the transaction completes successfully, everything is committed

* If the transaction fails, everything done up to the point of failure is rolled back.

* Consistency

* Any transaction will take the data from one consistent state to another, so only
valid consistent data is stored in the database

* |solation

* Concurrent transactions cannot interfere with each other

* Durability

¢ Committed transactions have their changes persisted in the database

1 e =] N4 I
hoges s |

ACID rules guarantee database transactions are processed in a reliable way.

© 2011 IBM Corporation

The “Isolation” rule is discussed in more detail in the next slides.

Consistency and Durability are also discussed in more detail in the presentation about
“Backup and recovery”

Information Management

Concurrency & Locking

i

© 2011 IBM Corporation

Information Management

Concurrency and Locking

ID Name Age
Peter 33
5 John 23
22 Mary 22
35 Ann 55

e Concurrency:

* Multiple users accessing the same resources at the
same time

* Locking:

* Mechanism to ensure data integrity and consistency

1 | / S T PIA(E) c CA i
‘II"" » s N ©2011 IBM Corporation

Let's move on, and provide an overview of concurrency and locking. Let's say there are
several applications; application A, B, C and D trying to access the same row in the same
table. Now if there was no concurrency control, then you may have that all of these
applications could be doing an update on this same row at the same time. So at the end
what will be the final result? It would be hard to tell. Concurrency, in general means that
several applications can work at the same time on the same database, or same tables on
the database while keeping the data consistent. Locking is how a database management
system can ensure data integrity and consistency. So in this example, if application B is the
first one to perform the update on the 2nd row, it would immediately take a lock on the row,
and the other applications would have to wait until this lock is released.

10

Information Management

Locking

* Locks are acquired automatically as needed to support a
transaction based on “isolation levels”

* COMMIT and ROLLBACK statements release all locks

* Two basic types of locks:

* Share locks (S locks) — acquired when an application wants to
read and prevent others from updating the same row

* Exclusive locks (X locks) — acquired when an application
updates, inserts, or deletes a row

1 ‘
s

/|

d @

© 2011 IBM Corporation

Locks are normally acquired automatically for you based on isolation levels that you can
set. Isolation levels are like 'policies’ on how locks are taken, and will be discussed in more
detail later on. As mentioned earlier, a COMMIT or ROLLBACK statement will release all
locks on a row. There are several types of locks in DB2. For simplicity, we only show the
main two: An 'S' lock for 'share' is taken when you perform READ operations such as when
using a SELECT statement. An 'X' lock for ‘exclusive' is taken when you perform
operations such as a DELETE, UPDATE, or INSERT.

11

Information Management

Problems if there is no concurrency control

Lost update

Uncommitted read

Non-repeatable read

Phantom read

1 [SRS imentati
Ve B8, :'-._- i © 2011 IBM Corporation
bha @ ! 1

Concurrency allows users to access a database simultaneously, so that several
applications can work on the same database at the same time while the data remains

consistent. There are several problems that can happen if there is no concurrency control.

The four problems that can happen are: lost update, uncommitted read, non-repeatable
read, and phantom read. We explain each of these problems in more detail next.

12

Information Management

Lost update

reservations
seat name
7C L
7B L
A A
App A App B
S

1 i
TR e

© 2011 IBM Corporation

Let's use the following example to explain the “Lost update” problem. In this example, say
you have a table called “reservations “ which has the column “seat”, the column “name”,

and so on.

13

Information Management

Lost update

reservations
seat name
7C
7B L
A A
App A App B

update reservations
set name = 'John'
where seat = '7C' y, "

l . - b CA - A - CA i
ﬂ 2. ;| ©2011 IBM Corporation

Now say application “A” updates the table “reservation”, so that the name for seat 7C is

Information Management

Lost update

reservations
seat name
7C John
7B L
A A
App A App B

update reservations
set name = 'John'
where seat = '7C' y, "

© 2011 IBM Corporation

changed to “John”.

Information Management

Lost update

reservations
seat name
7C John
/B _
A A
App A App B

update reservations update reservations
set name = 'John' set name = 'Mary'
where seat ='7C' y _ where seat ='7C'

1 I i PlAle imentati
IIIIII ‘A oo - -__) ©2011 IBM Corporation

Now assume there is another application “B” at the same time is trying to do the same but

Information Management

Lost update

reservations
seat name
7C Mary
/B _
A A
App A App B

update reservations update reservations
set name = 'John' set name = 'Mary'
where seat ='7C' y _ where seat ='7C'

1 . - e b CA - . - CA i

using the name “Mary”.

Information Management

Lost update

reservations
seat name
7C | M&R
/B
A A
App A App B
update reservations update reservations
set name = 'John' set name = '‘Mary"
where seat ='7C' y _ where seat ='7C'

1 I . — — PIAlE) c CA i
‘II"" ?f' ' o R © 2011 IBM Corporation

Assuming application B issued the update slightly later than application A, the last value for
the name would be “Mary”, which means that the first update from application A was a “lost
update”.

If we repeat the same process again, but this time application B performs the update first
followed by application A, in that case the last value for the name would be “John”, and the
first update from application B would be lost.

So basically without some type of control, we would lose an update from the first
application.

Information Management

Uncommitted read (also known as “dirty read”)

reservations
seat name
7C L
7B L
App A App B

© 2011 IBM Corporation

To explain the second problem called “Uncommitted read”, let's use the same example as
before.

Information Management

Uncommitted read (also known as “dirty read”)

reservations
seat name
7C L
7B L
App A App B

update reservations
set name = 'John’
where seat ='7C'

1 B r L T c PIAlE) - CA i
‘IIIIII il ©2011 IBM Corporation

Application A performs an update so that “John” is the name that corresponds to seat '7C".

Information Management

Uncommitted read (also known as “dirty read”)

reservations
seat name
7C John
7B L
App A App B

update reservations
set name = 'John’
where seat ='7C'

© 2011 IBM Corporation

Information Management

Uncommitted read (also known as “dirty read”)

reservations
seat name
7C John
7B L

App A

App B

update reservations
set name = 'John’
where seat ='7C'

e

Select name
from reservations
where seat is '7C'

© 2011 IBM Corporation

Next, application B issues a SELECT which would retrieve the name of this same record,

22

Information Management

Uncommitted read (also known as “dirty read”)

reservations
seat name
7C John
7B -
App A App B
update reservations Select name

set name = 'John’
where seat ='7C'

so that output is “John”.

from reservations
where seat is '7C'

John

© 2011 IBM Corporation

23

Information Management

Uncommitted read (also known as “dirty read”)

reservations
seat name
/C John
7B
App A App B
update reservations Select name

set name = 'John' from reservations John
where seat ='7C' where seat is '7C'

Roll back

1 : f = T c PIAlE) - CA i
‘IIIIII il ©2011 IBM Corporation

Next, application A issues a ROLLBACK

Information Management

Uncommitted read (also known as “dirty read”)

reservations
seat name
7C _
7B
App A App B
update reservations Select name
set name = 'John' from reservations John
where seat ='7C' where seat is '7C'
Roll back

1 f — — e plAale A - CA i
IIIIII A 20 N © 2011 IBM Corporation

which means any changes made would be discarded, so the corresponding name for seat
"7C'"is back to NULL.

Information Management

Uncommitted read (also known as “dirty read”)

reservations
seat name
7C _
7B
App A App B
update reservations Select name
set name = 'John' from reservations John
where seat ='7C' where seat is '7C'
Roll back

© 2011 IBM Corporation

s e

If application B continues further processing using “John”, it's actually using data that was
not committed, and is incorrect.

This problem is called “uncommitted read”.

Information Management

Non-repeatable read

reservations
seat name
7C L
7B L
App A App B

e

Let's move on to another problem called ‘non-repeatable read’.

© 2011 IBM Corporation

In this example we have the same reservation table, and the same applications.

27

Information Management

Non-repeatable read

reservations

seat

name

7C

/B

App A

App B

select seat

from reservations
where name is NULL

Application A is this time issuing a SELECT statement

© 2011 IBM Corporation

28

Information Management

Non-repeatable read

7C
/B

A

reservations

seat

name

7C

/B

App A

App B

select seat

from reservations
where name is NULL

which retrieves two seats '7C','7B".

© 2011 IBM Corporation

29

Information Management

Non-repeatable read

reservations

seat name

7C L

7B L

App A App B

7C select seat update reservations
- from reservations set name = 'John’
where name is NULL where seat ='7C'

1 r &
s e

Then application B issues an update,

© 2011 IBM Corporation

30

Information Management

Non-repeatable read

reservations
seat name
7C John
7B L
App A App B
7C select seat update reservations
- from reservations set name = 'John’
where name is NULL where seat ='7C'

1 r &
e

so seat '7C' is assigned a passenger with name 'John'.

© 2011 IBM Corporation

31

Information Management

Non-repeatable read

7C
/B

reservations
seat name
/C John
7B L
App A App B
select seat update reservations

from reservations
where name is NULL

select seat

from reservations
where name is NULL

set name = 'John’
where seat ='7C'

© 2011 IBM Corporation

When application A, within the same transaction issues another SELECT which is exactly
the same as the first one it had issued,

32

Information Management

Non-repeatable read

7C
/B

7B

1 r &
s e ek

reservations
seat name
/C John
7B L
App A App B
select seat update reservations

from reservations
where name is NULL

select seat

from reservations
where name is NULL

o0
00 -

this application will now get one seat: '7B'.

set name = 'John’
where seat ='7C'

© 2011 IBM Corporation

33

Information Management

Non-repeatable read

7C
/B

s e

/B

reservations
seat name
/C John
7B L
App A App B
select seat update reservations

from reservations
where name is NULL

select seat
reservations

where name is NULL

set name = 'John’
where seat ='7C'

© 2011 IBM Corporation

So it's not a repeatable read: Issuing the exact same SELECT statement within a

transaction leads to

different results.

34

Information Management

Phantom read

reservations
seat name
7C Susan
7B L
App A App B

1 B r L T PIAlE) - CA i
‘IIIIII N © 2011 IBM Corporation

Now let's talk about the last problem called ‘phantom read'.

Assume the reservations table has passenger 'Susan' assigned to seat '7C'.

Information Management

Phantom read

1
s e

reservations
seat name
/C Susan
7B -
App A App B
select seat

from reservations
where name is NULL

© 2011 IBM Corporation

When application A executes a SELECT to retrieve all seats not assigned (where name is

NULL),

36

Information Management

Phantom read

7B

reservations
seat name
/C Susan
7B -
App A App B
select seat

from reservations
where name is NULL

it will return only one value: '7B'.

© 2011 IBM Corporation

37

Information Management

Phantom read

7B

e

reservations
seat name
/C Susan
7B L
App A App B
select seat update reservations

from reservations
where name is NULL

Next application B updates seat '7C'

set name = NULL
where seat ='7C'

© 2011 IBM Corporation

38

Information Management

Phantom read

7B

s e

reservations
seat name
7C L
7B L
App A App B
select seat update reservations

from reservations
where name is NULL

setting the name to NULL.

set name = NULL
where seat ='7C'

© 2011 IBM Corporation

39

Information Management

Phantom read

reservations
seat name
7C L
7B L
App A App B
select seat update reservations
/B from reservations set name = NULL
where name is NULL where seat ='7C'
select seat
from reservations
where name is NULL

© 2011 IBM Corporation

If Application A executes again the exact same SELECT statement within the same
transaction,

Information Management

Phantom read

7B

reservations
seat name
7C L
7B L
App A App B
select seat update reservations

from reservations
where name is NULL

select seat
from reservations

where name is NULL

it will now retrieve two rows: '7C' and "7B'.

set name = NULL
where seat ='7C'

© 2011 IBM Corporation

41

Information Management

Phantom read

reservations
seat name
7C L
7B L
App A App B
select seat update reservations
/B from reservations set name = NULL
where name is NULL where seat ='7C'
— select seat
L — g m reservations
where name is NULL

ﬂt.’ 7) 28 (© 2011 IBM Corporation
A0 . Nith

So in this case the same SELECT in the same transaction is retrieving one more row, a
“phantom’ row. This is why this case is called “Phantom Read”. Itis very similar to a non-

repeatable case. In non-repeatable read you get less rows, while for “Phantom Read” you
get more rows.

Information Management

Isolation levels

* “Policies” to control when locks are taken

* DB2 provides different levels of protection to isol ate data
* Uncommitted Read (UR)

* Cursor Stability (CS)

* Currently committed (CC)
* Read Stability (RS)

* Repeatable Read (RR)

X e o © 2011 IBM Corporation
HR7SeS

You can think of isolation levels as policies on how you want DB2 to work with locks.

There are different isolation levels and the names are similar to the problems that we
discussed earlier. So we have:

- Uncommitted read or UR, also known as dirty read,
- Cursor Stability or CS,

- Read Stability or RS,

- Repeatable Read or RR.

43

Information Management

Setting the isolation levels

* |solation level can be specified at many levels
* Session (application),
* Connection,

e Statement
* For statement level, use the WITH {RR, RS, CS, UR} clause:

SELECT COUNT(*) FROM tabl WITH UR

* For embedded SQL, the level is set at bind time

* For dynamic SQL, the level is set at run time

1 I o - - e A CA - A > CA i
""" d s e © 2011 IBM Corporation
. ha @ B

You can set these isolation levels at different levels:

- You can set at the application level or session level, where the default is Cursor Stability.
- You can set at the Connection level;

- you can set at the Statement level.

- If you are using embedded SQL, you can set it at bind time.

- For dynamic SQL, you can set it at run time.

Example Scenario:

Application needs to get a "rough” count of how many rows are in table. Performance is of
utmost importance. Cursor Stability isolation level is required with the exception of one
SQL statement:

SELECT COUNT(*) FROM tabl WITH UR

44

Information Management

Comparing isolation levels

. \
ID NAME QTY
1 DISP 10 s 3
3 2 ‘
2 KEYB 3 : . {[f.‘,’:ﬁ.“ \I
3 MOUSE 15 For
4 CABLE 18 i : kl'lg::!;?'m’
5 cPU 1 S =
6 SOUND 4 i ¥
COMMIT POHNT

Application Bound——» RS or RR Cs |

W-or X-ROW LOCKS ALWAYS HELD UNTIL COMMIT ‘

‘""II A il T ¢ © 2011 IBM Corporation

Let's compare how each of these isolation levels work in terms of holding and releasing
locks.

The figure shows a table on the left side with six rows. Let's see what happens when your
application fetches rows from this table using different isolation levels.

Let's start with UR. As you can see, in this case no locks are taken as you fetch rows.

Now let's see what happens when using isolation level CS which is the default: You fetch
row 1, and a lock is taken. When you move on to fetch row 2, the Icok is release d from row
1, and a lock is taken on row 2. When you move on to fetch row 3, the lock from row 2 is
released, and a lock on row 3 is taken, and so on.

Now let's see what happens when using isolation RS or RR: You fetch row 1, and a lock is
taken. When you move on to fetch row 2, the lock in row 1 still is held, and now a lock in
row 2 is taken. When you move to fetch row 3, the lock in row 1 and row 2 still are held,
and now a lock in row 3 is taken, and so on.

So as you can see, isolation level UR allows for maximum concurrency. While, RR or RS

allows for the least concurrency. At the same time, UR provides the least accuracy in terms
of results while RS or RR provides the most accuracy.

45

Information Management

Cursor stability with currently committed (CC) semantics

* Cursor stability with currently committed semantics is the default
isolation level

* Use cur_commit db cfg parameter to enable/disable

* Avoids timeouts and deadlocks

Cursor Cursor stability with
stability

Situation

currently committed
Situation

Reader blocks Reader Reader blocks Reader No
Reader blocks Writer Reader blocks Writer No
I Writer blocks Reader Writer blocks Reader No

Writer blocks Writer Writer blocks Writer _

1 - b CA - A - CA i
/ e \ © 2011 IBM Corporation
e e X

When using CS, there are two different behaviors (which are described in more detail in the
next slide).

The behavior that prevents timeouts/deadlocks more is the one where “currently
committed” is enabled.

The main difference is highlighted (row #3 in both tables):

Without currently committed, a writer would block a reader (i.e: An UPDATE would block a
SELECT), so basically, the SELECT would have to wait.

With currently committed a writer does NOT block a reader. So even if one application is
doing an UPDATE on a row, another application can do a SELECT on the same row.

Information Management

Cursor stability with currently committed (CC) semantics

App A

reservations

seat

name

/C

Susan

Cursor stability without currently committed

App B

/B

Cursor stability with currently committed (Default behavior)
reservations

App A

seat

name

I4®

Susan

App B

/B

© 2011 IBM Corporation

This slide shows the different behaviors when working with CS. At the top we will explain

the behavior using CS without currently committed. And at the bottom we will explain the
behavior using CS with currently committed.

47

Information Management

Cursor stability with currently committed (CC) semantics

Cursor stability without currently committed
reservations

App A

update
reservations
set name = 'John'
where seat ='7C'

> X

seat

name

App B

/C

Susan

/B

Cursor stability with currently committed (Default behavior)
reservations

App A

seat

name

App B

I4®

Susan

/B

© 2011 IBM Corporation

So let's start at the top. Let's say an application A performs an UPDATE which will have to
take an X (exclusive) lock on the row.

48

Information Management

Cursor stability with currently committed (CC) semantics

Cursor stability without currently committed
reservations

App A

update
reservations
set name = 'John'
where seat ='7C'

> X

seat

name

App B

/C

John

/B

Cursor stability with currently committed (Default behavior)
reservations

App A

1 i
s e ek

e
00

seat

name

App B

I4®

Susan

/B

© 2011 IBM Corporation

49

Information Management

Cursor stability with currently committed (CC) semantics

Cursor stability without currently committed
reservations

App A

update
reservations
set name = 'John'
where seat = '7C'

ey

seat

name

/C

John

/B

S

App B
select name

from reservations
where seat ='7C'

Cursor stability with currently committed (Default behavior)
reservations

App A

1 , -
s e ek

seat

name

I4®

Susan

/B

App B

© 2011 IBM Corporation

When application B running in CS without CC (currently committed) tries to perform a
SELECT on the same row, it will request an 'S' (Shared) lock; which is not compatible with

an X lock,

50

Information Management

Cursor stability with currently committed (CC) semantics

Cursor stability without currently committed
reservations

App A

update
reservations
set name = 'John'
where seat = '7C'

ey

seat

name

/C

John

/B

b

S

App B
select name

from reservations
where seat ='7C'

Cursor stability with currently committed (Default behavior)
reservations

App A

and thus it will have to wait.

seat

name

I4®

Susan

/B

App B

© 2011 IBM Corporation

51

Information Management

Cursor stability with currently committed (CC) semantics

Cursor stability without currently committed
reservations

App A

update
reservations
set name = 'John'
where seat = '7C'

ey

seat

name

/C

John

/B

b

S

App B
select name

from reservations
where seat ='7C'

Cursor stability with currently committed (Default behavior)
reservations

App A

seat

name

I4®

Susan

/B

App B

© 2011 IBM Corporation

To the user, it will look as if application B is hanging. Only when application A commits, or
rolls back will application B will be able to proceed with the SELECT.

52

Information Management

Cursor stability with currently committed (CC) semantics

Cursor stability without currently committed
reservations

App A

update
reservations
set name = 'John'
where seat = '7C'

ey

seat

name

b

/C

John

S

/B

App B
select name

from reservations
where seat ='7C'

Cursor stability with currently committed (Default behavior)
reservations

App A

update
reservations
set name = 'John’
where seat = '7C’

Y

seat

name

App B

I4®

Susan

/B

Now, let's see how'"s the behavior at the bottom with CS using CC:
Using the same case, application A performs an update and takes a exclusive lock (X

lock).

© 2011 IBM Corporation

53

Information Management

Cursor stability with currently committed (CC) semantics

Cursor stability without currently committed
reservations

App A

update
reservations
set name = 'John'
where seat = '7C'

ey

seat

name

/C

John

/B

b

S

App B
select name

from reservations
where seat ='7C'

Cursor stability with currently committed (Default behavior)
reservations

App A

update
reservations
set name = 'John’
where seat = '7C’

Y

seat

name

I4®

John

/B

App B

© 2011 IBM Corporation

54

Information Management

Cursor stability with currently committed (CC) semantics

Cursor stability without currently committed
reservations

App A

update
reservations
set name = 'John'
where seat = '7C'

>X

seat

name

/C

John

/B

b

S

App B
select name

from reservations
where seat ='7C'

Cursor stability with currently committed (Default behavior)
reservations

App A

update
reservations
set name = 'John’
where seat = '7C’

>X

seat

name

I4®

John

/B

S

App B
select name

from reservations
where seat = '7C'

© 2011 IBM Corporation

When application B issues a SELECT on the same row, it is allowed to proceed,

55

Information Management

Cursor stability with currently committed (CC) semantics
Cursor stability without currently committed

App A

update
reservations
set name = 'John'
where seat = '7C'

ey

i e

S < select name

reservations
seat | name
7/C John
B

from reservations
where seat ='7C'

Cursor stability with currently committed (Default behavior)

App A

update
reservations
set name = 'John’
where seat = '7C’

Y

App B

g <« select name

reservations
seat | name
/C | John
mB

from reservations
where seat = '7C'

[CIPIAE DJUCUITIETIdatOln

© 2011 IBM Corporation

though it will retrieve the currently committed value, which in this example was “Susan'.
So in this case, the writer (update) does not block the reader (SELECT)

Note: If app B were using UR, the value retrieved would've been 'John” which is the
uncommitted value; but under CS, you only can retrieve committed values.

56

Information Management

Comparing and choosing an isolation level

Isolation Level Lost Dirty Non-repeatable |Phantom Read
update |Read Read

Repeatable Read (RR) - - - -

ReadStability (RS) - - - Possible

Cursor Stability (CS) - - Possible Possible

Uncommitted Read (UR) |- Possible Possible Possible

Application Type High data stability High data stability not
required required

Read-write transactions RS GS

Read-only transactions RS or RR UR

© 2011 IBM Corporation

1 1
T e ek

This chart summarizes which concurrency problems are resolved by which isolation level.
The “lost update” problem is resolved by all isolation levels.

The table at the bottom provides you with an idea of when to use which type of isolation
level, depending on your application type and “stability” of your data, meaning, how
accurate you want it to be.

Information Management

© 2011 IBM Corporation

58

Information Management

Lock wait
= By default, an application waits indefinitely to obtain any
needed locks

» LOCKTIMEOUT (db cfg):
— Specifies the number of seconds to wait for a lock

— Default value is -1 or infinite wait

» Example: (Same as when using isolation CS without CC):

reservations
App A seat | name ... App B
7/C | Susan
mB |

© 2011 IBM Corporation

You have already seen how LOCK WAIT works when we talked about Cursor stability
without Currently Committed. Let's revisit that example:

Information Management

Lock wait

= By default, an application waits indefinitely to obtain any

needed locks

» LOCKTIMEOUT (db cfg):
— Specifies the number of seconds to wait for a lock

— Default value is -1 or infinite wait

» Example: (Same as when using isolation CS without CC):

App A

update
reservations
set name = 'John’
where seat = '7C'

Application A performs an update taking an X lock.

Hx

App B

reservations
seat | name
7C | Susan
7B

© 2011 IBM Corporation

60

Information Management

Lock wait
= By default, an application waits indefinitely to obtain any
needed locks

» LOCKTIMEOUT (db cfg):
— Specifies the number of seconds to wait for a lock

— Default value is -1 or infinite wait

» Example: (Same as when using isolation CS without CC):

reservations
App A seat | name | ... App B
update ,
reservations X 7€ John
set name = 'John' m |
where seat = '7C'

1 1 . T emplate 1 =it .
Ve B8, :'-._- = © 2011 IBM Corporation
bha @ ! 1

61

Information Management

Lock wait
= By default, an application waits indefinitely to obtain any
needed locks

» LOCKTIMEOUT (db cfg):
— Specifies the number of seconds to wait for a lock

— Default value is -1 or infinite wait

» Example: (Same as when using isolation CS without CC):

reservations
App A seat | name | ... App B
update | X 7C | John g <——select name
reservations from reservations
set name = 'John' B where seat = '7C'
where seat = '7C'

1 | / S T C PIA(E) c CA i
‘II"" 7Y s N ©2011 IBM Corporation

Application B wants to read from the same row (which would take an S lock) but it cannot
since X and S locks are not compatible in CS without CC.

Information Management

Lock wait
= By default, an application waits indefinitely to obtain any
needed locks

» LOCKTIMEOUT (db cfg):
— Specifies the number of seconds to wait for a lock

— Default value is -1 or infinite wait

» Example: (Same as when using isolation CS without CC):

reservations
App A seat | name | ... App B
update X 7C | John g <———select name

reservations
set name = 'John' m
where seat = '7C'

from reservations
where seat = '7C'

© 2011 IBM Corporation

Therefore, application B must wait.

How long will it wait?

63

Information Management

Lock wait
= By default, an application waits indefinitely to obtain any
needed locks

» LOCKTIMEOUT (db cfg):
— Specifies the number of seconds to wait for a lock

— Default value is -1 or infinite wait

» Example: (Same as when using isolation CS without CC):

reservations
App A seat | name | ... * App B

update | X 7C | John g <« select name
reservations from reservations
set name = 'John' 42 P— where seat = '7C'
where seat = '7C'

© 2011 IBM Corporation

This is set by the parameter LOCKTIMEOUT. By default, this parameter is set to -1, which
means infinite wait.

Information Management

* Deadlocks

© 2011 IBM Corporation

65

Information Management

Deadlocks

» Occurs when two or more applications wait indefinitely for a resource

» Each application is holding a resource that the other needs

» \Waiting is never resolved

» [n the example, assume we are using isolation CS without CC

App B

reservations
App A seat = name
/C | Susan
mB |
8E Raul
oF Jin

1 -
s

© 2011 IBM Corporation

The example shows how a deadlock occurs. Note that the operations within App A occur

within one transaction. Similarly for App B. This is important to note because, for example,
if App A was doing an UPDATE, and then it COMMITTED, it would release all locks and we
would have a different scenario altogether.

66

Information Management

Deadlocks

» Occurs when two or more applications wait indefinitely for a resource

» Each application is holding a resource that the other needs

» \Waiting is never resolved

» [n the example, assume we are using isolation CS without CC

App A

update
reservations
set name = 'John’
where seat = '7C'

App A performs an update, so takes an X lock on row with seat 7C

> X

App B

reservations
seat | name
/C | Susan
mB |
8E Raul
oF Jin

© 2011 IBM Corporation

67

Information Management

Deadlocks

» Occurs when two or more applications wait indefinitely for a resource

» Each application is holding a resource that the other needs

» \Waiting is never resolved

» [n the example, assume we are using isolation CS without CC

App A

update
reservations
set name = 'John’
where seat = '7C'

> X

App B

reservations
seat | name
7C | John
7B
8E Raul
oF Jin

© 2011 IBM Corporation

The row is updated with “John”, though the change is not yet committed.

68

Information Management

Deadlocks

» Occurs when two or more applications wait indefinitely for a resource

» Each application is holding a resource that the other needs

» \Waiting is never resolved

» [n the example, assume we are using isolation CS without CC

App A

update
reservations
set name = 'John’
where seat = '7C'

1 , -
s e ek

Hx

App B

reservations
seat | name
7C | John
7B
8E Raul
oF Jin

update
reservations
set name = 'Sue'
where seat = '9F'

© 2011 IBM Corporation

App B performs an update on another row, the one with seat '9F'. It also will take an X lock

on this row

69

Information Management

Deadlocks

» Occurs when two or more applications wait indefinitely for a resource

» Each application is holding a resource that the other needs

» \Waiting is never resolved

» [n the example, assume we are using isolation CS without CC

App A
update
reservations
set name = 'John’
where seat = '7C'

> X

1 , -
T e ek

App B

reservations
seat | name
7C John
mB |
8E Raul
9F | Sue

update
reservations
set name = 'Sue'
where seat = '9F'

© 2011 IBM Corporation

The row is updated with “Sue”, though the change is not yet committed.

70

Information Management

Deadlocks

» Occurs when two or more applications wait indefinitely for a resource

» Each application is holding a resource that the other needs

» \Waiting is never resolved

» [n the example, assume we are using isolation CS without CC

reservations
App A seat | name App B
update . update
reservations X 7€ John reservations
set name = 'John' m set name = 'Sue'
where seat = '7C' where seat = '9F'
8E Raul
select name ——»>g 9F Sue
from reservations
where seat = '9F'

1 -
e

App A issues a SELECT on the row with seat 9F, so it wants to take an S lock on the row.

© 2011 IBM Corporation

Information Management

Deadlocks

» Occurs when two or more applications wait indefinitely for a resource

» Each application is holding a resource that the other needs

» \Waiting is never resolved

» [n the example, assume we are using isolation CS without CC

App A

update
reservations
set name = 'John’
where seat = '7C'

select name
from reservations
where seat = '9F'

> X

App B

reservations
seat | name
7C John
mB |
8E Raul
9F | Sue

update
reservations
set name = 'Sue'
where seat = '9F'

© 2011 IBM Corporation

App A hangs. It has to wait since App B has an X lock on row with seat 9F

72

Information Management

Deadlocks

» Occurs when two or more applications wait indefinitely for a resource

» Each application is holding a resource that the other needs

» \Waiting is never resolved

» [n the example, assume we are using isolation CS without CC

App A

update
reservations
set name = 'John’
where seat = '7C'

select name
from reservations
where seat = '9F'

App B

Hx

reservations
seat | name
7C John
mB |
8E Raul
9F | Sue

1 , -
TR e

update
reservations
set name = 'Sue'
where seat = '9F'

select name
from reservations
where seat ='7C'

© 2011 IBM Corporation

App B issues a SELECT on the row with seat 7C, so it wants to take an S lock on the row.

/3

Information Management

Deadlocks

» Occurs when two or more applications wait indefinitely for a resource

» Each application is holding a resource that the other needs

» \Waiting is never resolved

» [n the example, assume we are using isolation CS without CC

App A

update
reservations
set name = 'John’
where seat = '7C'

select name
from reservations
where seat = '9F'

> X

App B

reservations
seat | name
7C John
mB |
8E Raul
9F | Sue

update
reservations
set name = 'Sue'
where seat = '9F'

select name
from reservations
where seat ='7C'

© 2011 IBM Corporation

App B hangs. It has to wait since App A has an X lock on row with seat 7C

74

Information Management

Deadlocks

= Occurs when two or more applications wait indefinitely for a resource

» Each application is holding a resource that the other needs

» \Waiting is never resolved

» [n the example, assume we are using isolation CS without CC

reservations
App A seat | name App B

update . update

reservations X 7€ John reservations

set name = 'John' m set name = 'Sue'

where seat = '7C' where seat = '9F'
. 8E | Raul ..
select name o] = Sue select name

from reservations from reservations
where seat = '9F' where seat = '7C'

1
s

So we have a deadlock!. App A is waiting for App B to release its locks before it can
contineu, and App B is waiting for App A to release its locks before it can continue.

© 2011 IBM Corporation

75

Information Management

Deadlocks

= Deadlocks are commonly caused by poor application
design

= DB2 provides a deadlock detector

—Use DLCHKTIME (db cfq) to set the time interval for checking for
deadlocks

—When a deadlock is detected, DB2 uses an internal algorithm to pick
which transaction to roll back, and which one to continue.

—The transaction that is forced to roll back gets a SQL error. The
rollback causes all of its locks to be released

1 - e A CA - A - CA i
/i i o © 2011 IBM Corporation
e ok %

Normally deadlocks are situations that happen due to bad application design.

DB2 has a deadlock detector that checks every ‘x’ number of seconds if there is a
deadlock. ‘X’ is set by the deadlock check time (DLCHKTIME) db cfg parameter. When
the deadlock detector detects a deadlock, DB2 will use an internal algorithm to pick one of
the two applications that is causing the deadlock, and it will roll it back. The exact SQL
error the application that is rolled back receives is:

SQLCODE -911 (SQLSTATE 40001), with reason code 2 (Where reason code ‘2’ means
“The transaction was rolled back due to a deadlock”. The other application will be allowed
to continue

/6

Information Management

Thank you!

Use the forum in the db2university.com course AAOOLEN if you have technical questions
about the materials covered in this course. Fellow students, faculty and IBMers can help
you!

77

