

 1

1 © 2011 IBM Corporation

DB2 Application Development overview

IBM Information Management Cloud Computing Center of Competence
IBM Canada Lab

 2

2 © 2011 IBM Corporation
05/30/2011 Template Documentation

Agenda

� DB2 Application Development overview

� Server-side development

�Stored Procedures

�User-defined functions

�Triggers

� Client-side development

�Embedded SQL

�Static vs. Dynamic SQL

�CLI/ODBC

�JDBC / SQLJ / pureQuery

 3

3 © 2011 IBM Corporation
05/30/2011 Template Documentation

• Reading materials

• Getting started with DB2 Express-C eBook
• Chapter 14: Introduction to DB2 application development

• Getting started with IBM Data Studio for DB2 eBook
• Chapter 5: Developing SQL Stored Procedures
• Chapter 7: Developing user-defined functions

• Getting started with DB2 Application Development eBook
• Chapter 3, section 3.6: Triggers: The big picture

• Videos

• db2university.com course AA001EN
• Lesson 12: DB2 application development

Supporting reading material & videos

 4

4 © 2011 IBM Corporation
05/30/2011 Template Documentation

Agenda

� DB2 Application Development overview

� Server-side development

�Stored Procedures

�User-defined functions

�Triggers

� Client-side development

�Embedded SQL

�Static vs. Dynamic SQL

�CLI/ODBC

�JDBC / SQLJ / pureQuery

 5

5 © 2011 IBM Corporation
05/30/2011 Template Documentation

DB2 Application Development Overview

Server-side development (at the DB2 database server):
�Routines (Stored Procedures, UDFs)

�Database objects (Triggers)

� Client-side development (at the client):
�May require a DB2 client or driver to be installed

�Database applications (in C/C++, .NET, Cobol, Java, etc)

DB2 application development is divided in two parts, the first part talks about servier-side
development (Stored procedures, UDFs, etc), and the second part talks about Client-side
development (eg: Accessing DB2 from a Java program, for example)

 6

6 © 2011 IBM Corporation
05/30/2011 Template Documentation

DB2 Application Development Overview

Development Tools
IBM Data Studio, IDA, RSA, RAD, Visual

Studio, ZendCore

Client Server

Operating System

IBM Data Server Client / Driver

DB Application Programming
Interface (API)

Embedded static & dynamic SQL in C/C++,
Cobol, Fortran, REXX, ODBC/CLI,
JDBC/SQLJ, ADO, ADO.NET, OLE DB, PHP,
RoR, etc.

Programming Language

DB2 Server

Triggers

Database

Operating System

Stored
Procedures

User-defined
 Functions

In the figure, the left side represents a client machine where an application programmer
develops and runs his program. In this client machine, in addition to the operating system,
an IBM Data Server Client may be installed depending on the type of application being
developed. An IBM Data Server client includes the required connection drivers such as the
JDBC drivers and the ODBC/CLI drivers. These drivers can also be downloaded
independently by visiting the IBM DB2 Express-C Web site at ibm.com/db2/express

Using programming tools such as IBM Data Studio, InfoSphere Data Architect (IDA),
Rational Software Architect (RSA), Rational Application Developer (RAD), and so on, you
can develop your application in your desired programming language. The API libraries
supporting these languages are also included with the IBM Data Server Client, so that
when you connect to a DB2 Server, all the program instructions are translated appropriately
using these APIs into the SQL or XQuery statements understood by DB2.

On the right side of the figure a DB2 server is illustrated containing one database. Within
this database there are stored procedures, user-defined functions and triggers. We
describe all of these objects in more detail in the next slides as we are concentrating on
this part first.

 7

7 © 2011 IBM Corporation
05/30/2011 Template Documentation

DB2 Application Development Overview

Development Tools
IBM Data Studio, IDA, RSA, RAD, Visual

Studio, ZendCore

Client Server

Operating System

IBM Data Server Client / Driver

DB Application Programming
Interface (API)

Embedded static & dynamic SQL in C/C++,
Cobol, Fortran, REXX, ODBC/CLI,
JDBC/SQLJ, ADO, ADO.NET, OLE DB, PHP,
RoR, etc.

Programming Language

DB2 Server

Triggers

Database

Operating System

Stored
Procedures

User-defined
 Functions

In the figure, the left side represents a client machine where an application programmer
develops and runs his program. In this client machine, in addition to the operating system,
an IBM Data Server Client may be installed depending on the type of application being
developed. An IBM Data Server client includes the required connection drivers such as the
JDBC drivers and the ODBC/CLI drivers. These drivers can also be downloaded
independently by visiting the IBM DB2 Express-C Web site at ibm.com/db2/express

Using programming tools such as IBM Data Studio, InfoSphere Data Architect (IDA),
Rational Software Architect (RSA), Rational Application Developer (RAD), and so on, you
can develop your application in your desired programming language. The API libraries
supporting these languages are also included with the IBM Data Server Client, so that
when you connect to a DB2 Server, all the program instructions are translated appropriately
using these APIs into the SQL or XQuery statements understood by DB2.

On the right side of the figure a DB2 server is illustrated containing one database. Within
this database there are stored procedures, user-defined functions and triggers. We
describe all of these objects in more detail in the next slides as we are concentrating on
this part first.

 8

8 © 2011 IBM Corporation
05/30/2011 Template Documentation

Agenda

� DB2 Application Development overview

� Server-side development

�Stored Procedures

�User-defined functions

�Triggers

� Client-side development

�Embedded SQL

�Static vs. Dynamic SQL

�CLI/ODBC

�JDBC / SQLJ / pureQuery

 9

9 © 2011 IBM Corporation
05/30/2011 Template Documentation

Stored procedures overview

Client Application Server

SQL #1

SQL #2

SQL #3

Network

This figure illustrates how Stored Procedures work and why they are needed.

At the top left corner of the figure, you see several SQL statements executed one after the
other. Each SQL is sent from the client to the data server, and the data server returns the
result back to the client. If many SQL statements are executed like this, network traffic
increases.

 10

10 © 2011 IBM Corporation
05/30/2011 Template Documentation

Stored procedures overview

Client Application Server

SQL #1

SQL #2

SQL #3

Network

SQL #1

SQL #2

SQL #3

myproc

On the other hand, at the bottom, you see an alternate method that incurs less network
traffic. This second method calls a stored procedure myproc stored on the server, which
contains the same SQL;

 11

11 © 2011 IBM Corporation
05/30/2011 Template Documentation

Stored procedures overview

Client Application Server

SQL #1

SQL #2

SQL #3

Network

SQL #1

SQL #2

SQL #3

myproc

CALL myproc

and then at the client (on the left side), the CALL statement is used to call the stored
procedure.

 12

12 © 2011 IBM Corporation
05/30/2011 Template Documentation

Stored procedures overview

Client Application Server

SQL #1

SQL #2

SQL #3

Network

SQL #1

SQL #2

SQL #3

myproc

CALL myproc

This second method is more efficient, as there is only one call statement that goes through
the network, and one result set returned to the client.

Stored procedures can also be helpful for security purposes in your database. For
example, you can let users access tables or views only through stored procedures; this
helps lock down the server and keep users from accessing information they are not
supposed to access. This is possible because users do not require explicit privileges on the
tables or views they access through stored procedures; they just need to be granted
sufficient privilege to invoke the stored procedures.

 13

13 © 2011 IBM Corporation
05/30/2011 Template Documentation

Stored procedures overview

� Usually contain one or more SQL statements as well as
procedural (business) logic

� Executed and managed by DB2 (server-side objects)

� Can be written using SQL PL, C/C++, Java, Cobol, CLR
supported languages, OLE, PL SQL, etc.

� Benefits for using stored procedures include:
�Centralized business logic that promotes code re-use
�Improved security
�Improved performance

� This workshop focuses on SQL PL procedures because of
their popularity, good performance and simplicity

 14

14 © 2011 IBM Corporation
05/30/2011 Template Documentation

Creating your first stored procedure

� Using the Command Line Processor:

 db2=> connect to sample
 db2=> create procedure p1 begin end

� Using the IBM Data Studio
(Demo)

The procedure created using the CLP is doing nothing. It's used for illustration purposes.
Note you need to connect to the database first, because that's where the stored procedure
resides.

 15

15 © 2011 IBM Corporation
05/30/2011 Template Documentation

Basic stored procedure structure

CREATE PROCEDURE proc_name [({optional parameters})]
[optional procedure attributes]
<statement>

[optional parameters]
IN Input parameter
OUT Output parameter
INOUT Input and Output parameter

Example:
 CREATE PROCEDURE proc(IN p1 INT, OUT p2 INT, INOUT p3 INT)
 ...

 16

16 © 2011 IBM Corporation
05/30/2011 Template Documentation

Basic stored procedure structure

[optional procedure attributes]
 LANGUAGE SQL

 RESULT SETS <n> (required if returning result sets)

<statement> is a single statement, or a set
of statements grouped by BEGIN [ATOMIC] ... END

LANGUAGE SQL

This attribute indicates the language the stored procedure will use. LANGUAGE SQL is
the default value. For other languages, such as Java or C use LANGUAGE JAVA or
LANGUAGE C, respectively.

RESULT SETS <n>

This is required if your stored procedure will be returning n result sets.

 17

17 © 2011 IBM Corporation
05/30/2011 Template Documentation

Basic stored procedure structure: Compound statements

BEGIN [ATOMIC]
 <declare variables>
 <declare conditions>
 <declare statements>
 <declare cursors>
 <declare handlers>

 <logic >

END

Declarations

Logic -
Can contain other
compound stmts

Compound
Statement

Optionally atomic

A compound statement in a stored procedure is a statement consisting of several
procedural instructions and SQL statements encapsulated by the keywords BEGIN and
END. When the ATOMIC keyword follows the BEGIN keyword, the compound statement is
treated as one unit, that is, all of the instructions or statements in the compound statement
must be successful in order for the entire compound statement to be successful. If one of
the statements is not, then everything is rolled back.

Note: The order must be followed as shown.

For example, if you try to declare a cursor before variables, you will get errors.

 18

18 © 2011 IBM Corporation
05/30/2011 Template Documentation

Variable declaration & assignments

 DECLARE var_name <data type> [DEFAULT value]

�SET total = 100;
ƒSame as VALUES(100) INTO total;

•SET total = NULL;
ƒany variable can be set to NULL

•SET total = (select sum(c1) from T1);
ƒCondition is raised if more than one row

•SET first_val = (select c1 from T1 fetch first 1 ro w only)
ƒfetch only the first row from a table

•SET sch = CURRENT SCHEMA;

 SET var_name = value

Examples:

Examples:
 DECLARE temp1 SMALLINT DEFAULT 0;
 DECLARE temp2 VARCHAR(10) DEFAULT 'hello';
 DECLARE temp3 DATE DEFAULT '1998-12-25';

 19

19 © 2011 IBM Corporation
05/30/2011 Template Documentation

Example: Stored procedure with parameters

CREATE PROCEDURE P2 (IN v_p1 INT,

 INOUT v_p2 INT,

 OUT v_p3 INT)

LANGUAGE SQL

SPECIFIC myP2

BEGIN

 -- my second SQL procedure

 SET v_p2 = v_p2 + v_p1;

 SET v_p3 = v_p1;

END

To call the procedure from the Command Line Process or:
db2=> call P2 (3, 4, ?)

Note :

The question mark is required when calling a stored procedure from an application (other
than Data Studio) for OUT parameters.

 20

20 © 2011 IBM Corporation
05/30/2011 Template Documentation

Example: Stored procedure processing a cursor

CREATE PROCEDURE sum_salaries(OUT sum INTEGER)

LANGUAGE SQL

BEGIN

 DECLARE p_sum INTEGER;

 DECLARE p_sal INTEGER;

 DECLARE SQLSTATE CHAR(5) DEFAULT '00000';

 DECLARE c CURSOR FOR

 SELECT SALARY FROM EMPLOYEE;

 SET p_sum = 0;

 OPEN c;

 FETCH FROM c INTO p_sal;

 WHILE(SQLSTATE = '00000') DO

 SET p_sum = p_sum + p_sal;

 FETCH FROM c INTO p_sal;

 END WHILE;

 CLOSE c;

 SET sum = p_sum;

END

 21

21 © 2011 IBM Corporation
05/30/2011 Template Documentation

SQLCODE and SQLSTATE

� Access requires explicit declaration:
�DECLARE SQLSTATE CHAR(5);
�DECLARE SQLCODE INT;

� Can be declared ONLY at outermost scope and
automatically set by DB2 after each operation

� SQLCODE
�= 0, successful.
�> 0, successful with warning
�< 0, unsuccessful
�= 100, no data was found.

�i.e. FETCH statement returned no data

�SQLSTATE
�SQLSTATE '00000' = Success
�SQLSTATE '02000' = Not found
�SQLSTATE '01XXX' = Warning
�Everything else = Exception

 22

22 © 2011 IBM Corporation
05/30/2011 Template Documentation

Example: Calling a stored procedure from Java application
try

{

// Connect to sample database

String url = “jdbc:db2:sample”;

con = DriverManager.getConnection(url);

 CallableStatement cs = con.prepareCall(“CALL
trunc_demo(?, ?)”);

// register the output parameters

callStmt.registerOutParameter(1, Types.VARCHAR);

callStmt.registerOutParameter(2, Types.VARCHAR);

cs.execute();

con.close();

}

catch (Exception e)

{

/* exception handling logic goes here */

}

More examples at:

C:\Program Files\IBM\SQLLIB\samples

 23

23 © 2011 IBM Corporation
05/30/2011 Template Documentation

Agenda

� DB2 Application Development overview

� Server-side development

�Stored Procedures

�User-defined functions

�Triggers

� Client-side development

�Embedded SQL

�Static vs. Dynamic SQL

�CLI/ODBC

�JDBC / SQLJ / pureQuery

 24

24 © 2011 IBM Corporation
05/30/2011 Template Documentation

User-defined functions

� Functions always return a value

� Some built-in functions already exist out-of-the-box
�Eg: SUM(), AVG(), DIGITS(), etc.

� Can create UDFs in:
�SQL PL, C/C++, Java, CLR, OLE, etc.

�In this workshop, we focus on SQL PL functions because of their
simplicity and popularity

A user-defined function (UDF) is a database application object that maps a set of input
data values into a set of output values. For example, a function may take a measurement
in inches as input, and return the result in centimeters.

DB2 supports creating functions using SQL PL, PL/SQL, C/C++, Java, CLR (Common
Language Runtime), and OLE (Object Linking and Embedding) (i.e: .NET technologies).

You can think of a UDF as a way to allow users to extends the SQL language to their
needs. You invoke functions from a SELECT or a VALUES statement

 25

25 © 2011 IBM Corporation
05/30/2011 Template Documentation

Type of functions

� Scalar functions
�Return a single value

�Cannot change database state (i.e. no INSERT, UPDATE, DELETE
statements allowed)
– Example: COALESCE(), SUBSTR()

� Table functions
�Return values in a table format

�Called in the FROM clause of a query

�Can change database state (i.e. allow INSERT, UPDATE, DELETE
statements)

– Example: SNAPSHOT_DYN_SQL(), MQREADALL()

� Others type of functions (not covered in this cours e):
�Row functions

�Column functions

 26

26 © 2011 IBM Corporation
05/30/2011 Template Documentation

Scalar functions

CREATE FUNCTION deptname(p_empid VARCHAR(6))

RETURNS VARCHAR(30)

SPECIFIC deptname

BEGIN ATOMIC

 DECLARE v_department_name VARCHAR(30);

 DECLARE v_err VARCHAR(70);

 SET v_department_name = (

 SELECT d.deptname FROM department d, employ ee e

 WHERE e.workdept=d.deptno AND e.empno= p_empid);

 SET v_err = 'Error: employee ' || p_empid || ' was not found';

 IF v_department_name IS NULL THEN

 SIGNAL SQLSTATE '80000' SET MESSAGE_TEXT=v_ err;

 END IF;

 RETURN v_department_name;

END

� Scalar functions take input values and return a single value
� They cannot be used to modify table data

In the above listing, the function name is deptname and it returns the department number
of an employee based on the employee id.

 27

27 © 2011 IBM Corporation
05/30/2011 Template Documentation

Invoking a scalar function

� Scalar UDFs can be invoked in SQL statements wherever a scalar
value is expected, or in a VALUES clause

�SELECT DEPTNAME(‘000010’) FROM SYSIBM.SYSDUMMY1

�VALUES DEPTNAME(‘000010’)

A scalar UDF can be invoked using the VALUES statement. It can also be invoked from a
SQL statement wherever a scalar value is expected. For example, try the following from
the DB2 Command Window or from a Linux or UNIX terminal:

db2 "values (deptname ('000300'))"

or

db2 "select (deptname ('000300')) from sysibm.sysdummy1"

Note in the second example that the SYSIBM.SYSDUMMY1 is used. This is a special
dummy table with one row and one column. It is used to ensure that only one value is
returned. If you try the same SELECT statement with any other table that had more rows,
the function would be invoked as many times as the table has.

 28

28 © 2011 IBM Corporation
05/30/2011 Template Documentation

Table UDFs

CREATE FUNCTION getEnumEmployee(p_dept VARCHAR(3))

RETURNS TABLE

 (empno CHAR(6),

 lastname VARCHAR(15),

 firstnme VARCHAR(12))

SPECIFIC getEnumEmployee

RETURN

 SELECT e.empno, e.lastname, e.firstnme

 FROM employee e

 WHERE e.workdept=p_dept

Example: A function that enumerates a set of employees of a department

� Returns a table

� Used in the FROM clause of a query

� Typically used to return a table and keep an audit record

Table functions return a table of rows. You can call them using the FROM clause of a
query. Table functions, as opposed to scalar functions, can change the database state;
therefore, INSERT, UPDATE, and DELETE statements are allowed. Some built-in table
functions are SNAPSHOT_DYN_SQL() and MQREADALL(). Table functions are similar to
views, but since they allow for data modification statements (INSERT, UPDATE, and
DELETE) they are more powerful. Typically they are used to return a table and keep an
audit record.

 29

29 © 2011 IBM Corporation
05/30/2011 Template Documentation

Calling a table UDFs

� Used in the FROM clause of an SQL statement

� The TABLE() function must be applied and must be aliased.

 SELECT * FROM

 TABLE (getEnumEmployee('E01')) T

aliasTABLE() function

A table UDF has to be invoked in the FROM clause of an SQL statement since it returns a
table. The special TABLE() function must be applied and an alias must be provide after its
invocation.

 30

30 © 2011 IBM Corporation
05/30/2011 Template Documentation

Agenda

� DB2 Application Development overview

� Server-side development

�Stored Procedures

�User-defined functions

�Triggers

� Client-side development

�Embedded SQL

�Static vs. Dynamic SQL

�CLI/ODBC

�JDBC / SQLJ / pureQuery

 31

31 © 2011 IBM Corporation
05/30/2011 Template Documentation

Triggers

� A trigger is a database object defined on a table and fired
when an INSERT, UPDATE, or DELETE operation is
performed.

� Activate (“fire”) automatically

� Operations that cause triggers to fire are called triggering
SQL statements

Triggers are database objects associated with a table that define operations to occur when
an INSERT, UPDATE, or DELETE operation is performed on the table. Triggers are
activated automatically. The operations that cause triggers to fire are called triggering SQL
statements.

 32

32 © 2011 IBM Corporation
05/30/2011 Template Documentation

Types of triggers

� BEFORE

�Activation before row is inserted, updated or deleted

� AFTER

�Activated after the triggering SQL statement has executed to
successful completion

� INSTEAD OF

�Defined on views

�Logic defined in the trigger is executed instead of the triggering
SQL statement

 33

33 © 2011 IBM Corporation
05/30/2011 Template Documentation

Example of a BEFORE trigger

CREATE TRIGGER default_class_end

NO CASCADE BEFORE INSERT ON cl_sched

REFERENCING NEW AS n

FOR EACH ROW

MODE DB2SQL

WHEN (n. ending IS NULL)

 SET n. ending = n. starting + 1 HOUR

if no value
provided on
insert, column is
NULL

optional
 WHEN

define
qualifier for
new values

The trigger default_class_end will be triggered before an INSERT SQL statement is
performed on the table CL_SCHED. This table is part of the SAMPLE database, so you
can create and test this trigger yourself while connected to this database. The variable n in
the trigger definition represents the new value in an INSERT, that is, the value being
inserted. The trigger will check the validity of what is being inserted into the table. If the
column ENDING has no value during an INSERT, the trigger will ensure it has the value of
the column STARTING plus 1 hour. To test the trigger you can do:

db2 insert into cl_sched (class_code, day, starting) values ('abc',1,current time)

db2 select * from cl_sched

 34

34 © 2011 IBM Corporation
05/30/2011 Template Documentation

Example of an AFTER trigger

CREATE TRIGGER audit_emp_sal

AFTER UPDATE OF salary ON employee

REFERENCING OLD AS o NEW AS n

FOR EACH ROW

MODE DB2SQL

INSERT INTO audit VALUES (

CURRENT TIMESTAMP, ' Employee ' || o. empno || '

salary changed from ' || CHAR(o. salary) || ' to
' || CHAR(n.salary) || ' by ' || USER)

� Similar to BEFORE triggers, except that INSERT, UPDATE and DELETE
are supported

� Prereq:

� CREATE TABLE audit (mytimestamp timestamp, comment varchar (1000))

The trigger audit_emp_sal is used to perform auditing on the column SALARY of the
EMPLOYEE table. When someone makes a change to this column, the trigger will be
activated to write the information about the changed made to the salary into another table
called AUDIT. The OLD as o NEW as n line indicates that the prefix o will be used to
represent the old or existing value in the table, and the prefix n will be used to represent
the new value coming from the UPDATE statement. Thus, o.salary represents the old or
existing value of the salary, and n.salary represents the updated value for the column
salary data.

 35

35 © 2011 IBM Corporation
05/30/2011 Template Documentation

Example of an INSTEAD OF trigger

CREATE TRIGGER update_view1

 INSTEAD OF UPDATE ON view1

 REFERENCING OLD AS o NEW AS n

 FOR EACH ROW

 MODE DB2SQL

 BEGIN ATOMIC

 UPDATE countries

 SET region = n.region

 WHERE region = o.region;

 END

� It is activated when performing changes to a view
� Prereq:
 CREATE TABLE countries (id int, country varchar(50),

 region varchar (50), ave rage_temp int)
 CREATE VIEW view1 (id, continent, temperature) a s
 SELECT id, region, average_temp from coun tries

Instead of triggers are defined on views. Since views are defined dynamically using a
SELECT statement that accesses one or more tables, views cannot be updated. However,
using this type of trigger, you can give users the illusion that a view can be updated
because the logic defined in the trigger is executed instead of the triggering SQL
statement. For example, if you perform an update operation on a view, the instead of
trigger will be activated to actually perform the update on the base tables that form the
view.

Triggers cannot be created from IBM Data Studio unless you use the “Script” folder. They
can be created from the Control Center or from the Command line tools (DB2 Command
Window, Command Line Processor)

 36

36 © 2011 IBM Corporation
05/30/2011 Template Documentation

Agenda

� DB2 Application Development overview

� Server-side development

�Stored Procedures

�User-defined functions

�Triggers

� Client-side development

�Embedded SQL

�Static vs. Dynamic SQL

�CLI/ODBC

�JDBC / SQLJ / pureQuery

 37

37 © 2011 IBM Corporation
05/30/2011 Template Documentation

DB2 Application Development Overview

Server-side development (at the DB2 database server):
�Routines (Stored Procedures, UDFs)

�Database objects (Triggers)

� Client-side development (at the client):
�May require a DB2 client or driver to be installed

�Database applications (in C/C++, .NET, Cobol, Java, etc)

 38

38 © 2011 IBM Corporation
05/30/2011 Template Documentation

Accessing DB2

Command Line
Processor

Commands

Interactive
SQL

Applications

APIs

Embedded
SQL

Call Level
Interface

SQL/API

DB2 Engine

Tools

IBM Data Studio

JAVA

…
…

Optim Development
Studio

Optim Database
Administrator

In the end, the SQL/API layer converts everything into SQL that DB2 can understand.

 39

39 © 2011 IBM Corporation
05/30/2011 Template Documentation

Application development freedom

� Ruby on Rails

� C/C++ (ODBC and Static SQL)

� JDBC and SQLJ

� Borland

� Python

� PHP

� Perl

� .NET languages

� OLE-DB

� ADO

� Web Services

� SQL

� MS Office: Excel, Access, Word

 40

40 © 2011 IBM Corporation
05/30/2011 Template Documentation

Agenda

� DB2 Application Development overview

� Server-side development

�Stored Procedures

�User-defined functions

�Triggers

� Client-side development

�Embedded SQL

�Static vs. Dynamic SQL

�CLI/ODBC

�JDBC / SQLJ / pureQuery

 41

41 © 2011 IBM Corporation
05/30/2011 Template Documentation

#include <stdio.h>
#include <stdlib.h>
..
int main(int argc, char** argv)
{
EXEC SQL BEGIN DECLARE
SECTION;
 char dbname[15];
 char userID[8];
 char psw[8];
EXEC SQL END DECLARE
SECTION;
...
/* connect to a database */
EXEC SQL CONNECT TO
:dbname USER :userID
USING :psw;
if (SQLCODE != 0) {
 printf ("\n *** Error ***\n");

Embedded SQL

Only SQL, no
C code

Only C code,
no embedded

SQL
Object File

Executable
File

Database

Package
Executable SQL
with access path

information

hello.sqc

hello.bnd

hello.c hello.o hello.exe

compile link

bind hello.bnd

precompile hello.sqc bindfile hello.exe needs the
right package to run
successfully

Embedded SQL applications are applications where SQL is embedded into a host
language such as C, C++, or COBOL. The embedded SQL application can include static
or dynamic SQL.

In the figure, the C program hello.sqc contains embedded SQL. The embedded SQL API
for the C language uses EXEC SQL (highlighted in Figure 1.2) as a delimiter to allow the
PRECOMPILER that comes with DB2 to identify the SQL statements to be translated
versus the actual C code.

You may also note in the hello.sqc listing that some variables are prefixed with a colon, as
in :dbname, :userID, and :psw. These are called host variables. Host variables are
variables from the host language that are referenced in the embedded SQL statements.

Issuing the precompile command (also known as the prep command) with the bindfile
option generates two files, the hello.bnd bind file containing only SQL statements and the
hello.c file containing only C code. The bind file will be compiled using the bind command
to obtain a package that is stored in the database. A package includes the
compiled/executable SQL and the access path DB2 will follow to retrieve the data. To issue
the bind command, a connection to the database must exist. At the bottom of the figure,
the hello.c file is compiled and linked like any regular C program. The resulting executable
file hello.exe has to match the package stored in the database to successfully execute.

 42

42 © 2011 IBM Corporation
05/30/2011 Template Documentation

Agenda

� DB2 Application Development overview

� Server-side development

�Stored Procedures

�User-defined functions

�Triggers

� Client-side development

�Embedded SQL

�Static vs. Dynamic SQL

�CLI/ODBC

�JDBC / SQLJ / pureQuery

 43

43 © 2011 IBM Corporation
05/30/2011 Template Documentation

Static SQL
� The SQL statement structure is fully known at precompile time.

SELECT lastname, salary FROM employee

� The names for the columns (lastname, firstname) and tables
(employee) referenced in a statement are fully known at
precompile time.

� Host variables values can be specified at run time (but their data type
must still be precompiled).

SELECT lastname, salary

 FROM employee

 WHERE firstname = :fname

� You precompile, bind, and compile statically executed SQL statements
before you run your application.

� Static SQL is best used on databases whose statistics do not change a
great deal.

Static SQL statements are the ones where the SQL structure is fully known at precompile
time.

In this second example, a host variable :fname is used as part of an embedded SQL
statement. Though the value of the host variable is unknown until runtime, its data type is
known from the program, and all the other objects (column names, table names) are fully
known ahead of time. DB2 software uses estimates for these host variables to calculate
the access plan ahead of time; therefore, this case is still considered static SQL.

You precompile, bind, and compile statically executed SQL statements before you run your
application. Static SQL is best used on databases whose statistics do not change a great
deal

 44

44 © 2011 IBM Corporation
05/30/2011 Template Documentation

Dynamic SQL

� The SQL is built and executed at run-time.

SELECT ?, ? FROM ?

�The names for the columns and tables referenced in a statement are not
known until runtime.

� The access plan is determined at runtime.

�Normally static SQL performs better than dynamic SQL since the access
plan is calculated ahead of time

�For tables whose statistics change often, dynamic SQL may provide a more
accurate access plan.

� When working with dynamic SQL, use parameter markers (?) to
reduce the amount of times an access plan is calculated. (see
following example)

In this example, the names for the columns and table referenced by the statement are not
known until runtime. Therefore the access plan is calculated only at runtime and using the
statistics available at the time. These types of statements are considered Dynamic SQL
statements.

Some programming APIs, like JDBC and ODBC, always use dynamic SQL regardless of
whether the SQL statement includes known objects or not. For example, the statement
SELECT lastname, salary FROM employee has all the columns and table names known
ahead of time, but through JDBC or ODBC, you do not precompile the statements. All the
access plans for the statements are calculated at runtime.

 45

45 © 2011 IBM Corporation
05/30/2011 Template Documentation

Dynamic SQL
� Example:

 Case 1:

EXECUTE IMMEDIATELY SELECT name from EMP where dept = 1

 EXECUTE IMMEDIATELY SELECT name from EMP where de pt = 2

 Case 2:

 strcpy(hVStmtDyn, “SELECT name FROM emp WHERE de pt = ?");

 PREPARE StmtDyn FROM :hVStmtDyn;

 EXECUTE StmtDyn USING 1;

 EXECUTE StmtDyn USING 2;

� In case 1, each statement is treated as different SQL, therefore DB2 will
calculate the access plan for each.

� In case 2, there is only one SQL statement:

“SELECT name FROM emp WHERE dept = ?“

� Therefore, the access plan will only be calculated once, and cached in memory.

In general, two statements are used to treat a SQL statement as dynamic:

PREPARE: This statement prepares or compiles the SQL statement calculating the access

plan to use to retrieve the data

EXECUTE: This statement executes the SQL

Alternatively you can execute a PREPARE and EXECUTE in one single statement:
EXECUTE IMMEDIATELY

 46

46 © 2011 IBM Corporation
05/30/2011 Template Documentation

v

v

Static vs. Dynamic SQL

� Embedded SQL applications support static & dynamic SQL

� Example of a static SQL in an embedded SQL C program

 EXEC SQL SELECT name, dept

 INTO :name, :dept

 FROM staff WHERE id = 310;

printf(…)

� Example of a dynamic SQL in an embedded SQL C program
...

 strcpy(hostVarStmtDyn,

 "UPDATE staff SET salary = salary + 1000 WHERE dept = ?");

EXEC SQL PREPARE StmtDyn FROM :hostVarStmtDyn;

EXEC SQL EXECUTE StmtDyn USING :dept;

With respect to performance, static SQL will normally perform better than dynamic SQL
since the access plan in static SQL is performed at precompile time and not at runtime.
However, for environments where there is a lot of activity such as INSERTs and DELETEs,
the statistics calculated at precompile time may not be up-to-date, and therefore, the
access plan of the static SQL may not be optimal. In this case, dynamic SQL may be a
better choice, assuming a RUNSTATS command is frequently executed to collect current
statistics.

 47

47 © 2011 IBM Corporation
05/30/2011 Template Documentation

Agenda

� DB2 Application Development overview

� Server-side development

�Stored Procedures

�User-defined functions

�Triggers

� Client-side development

�Embedded SQL

�Static vs. Dynamic SQL

�CLI/ODBC

�JDBC / SQLJ / pureQuery

 48

48 © 2011 IBM Corporation
05/30/2011 Template Documentation

CLI / ODBC

� CLI = Call Level Interface

� DB2 CLI can be used as the ODBC Driver when loaded by an ODBC
Driver Manager

� DB2 CLI conforms to ODBC 3.51

DB2 CLI

ODBC
3.51

DB2 CLI conforms to ODBC 3.51 and can be used as the ODBC Driver when loaded by an
ODBC Driver Manager. The figure can help you picture DB2 CLI support for ODBC.

 49

49 © 2011 IBM Corporation
05/30/2011 Template Documentation

CLI / ODBC

� To run a CLI/ODBC application all you need is the DB2 CLI driver.
This driver is installed from either of these:
� IBM Data Server Client

� IBM Data Server Runtime Client

� IBM Data Server Driver for ODBC and CLI

� To develop a CLI/ODBC application you need the DB2 CLI driver
and also the appropriate libraries. These can be found only on:
� IBM Data Server Client

 50

50 © 2011 IBM Corporation
05/30/2011 Template Documentation

CLI / ODBC

� CLI/ODBC characteristics:
�The code is easily portable between several RDBMS vendors

�Unlike embedded SQL, there is no need for a precompiler or host
variables

�It runs dynamic SQL

�It is very popular

 51

51 © 2011 IBM Corporation
05/30/2011 Template Documentation

Agenda

� DB2 Application Development overview

� Server-side development

�Stored Procedures

�User-defined functions

�Triggers

� Client-side development

�Embedded SQL

�Static vs. Dynamic SQL

�CLI/ODBC

�JDBC / SQLJ / pureQuery

 52

52 © 2011 IBM Corporation
05/30/2011 Template Documentation

JDBC / SQL / pureQuery

� JDBC characteristics:
�Like in ODBC, the code is easily portable between several RDBMS vendors

�Dynamic SQL

� It is very popular

� SQLJ
�Embedded SQL in Java

�Static SQL

�Not that popular

� pureQuery
�Eclipse-based plug-in to manage relational data as objects

� IBM’s paradigm to develop Java database applications

�New since mid-2007, available with Optim Development Studio

Java Database Connectivity (JDBC) is a Java programming API that standardizes the
means to work and access databases. In JDBC the code is easily portable between several
RDBMS vendors. The only changes required to the code are normally which JDBC driver to
load and the connection string. JDBC uses only dynamic SQL and it is very popular.

SQLJ is the standard for embedding SQL in Java programs. It is mainly used with static
SQL, though it can inter-operate with JDBC as shown in the figure. Though it is normally
more compact than JDBC programs and provides better performance, it has not been
widely accepted. SQLJ programs must be run through a preprocessor (the SQLJ
translator) before they can be compiled.

In the figure (see next slide), a DB2 client may or may not be required depending on the
type of JDBC driver used.

pureQuery is an IBM Eclipse-based plug-in to manage relational data as objects.
Available since 2007, pureQuery can automatically generate the code to establish an
object-relational mapping (ORM) between your object oriented code and the relational
database objects. You start by creating a Java project with OptimTM Development Studio
(ODS), connect to a DB2 database, and then have ODS discover all the database objects.
Through the ODS GUI you can pick a table and then choose to generate the pureQuery
code which would transform any of the underlying relational table entities into a Java
object. Code is generated to create the relevant SQL statements and parent Java objects
that encapsulate those statements. The generated Java objects and the contained SQL
statements can be further customized. With pureQuery, you can decide at runtime whether
you want to run your SQL in static or dynamic mode. pureQuery supports both Java and
.NET.

 53

53 © 2011 IBM Corporation
05/30/2011 Template Documentation

JDBC / SQLJ – Supported drivers

Driver
Type

Driver Name Packaged
as

Supports Minimum level of
SDK for Java
required

Type 2 DB2 JDBC Type 2
Driver for Linux,
UNIX and Windows
(Deprecated)

db2java.zip JDBC 1.2 and
JDBC 2.0

1.4.2

Type 2
and
Type 4

IBM Data Server
Driver for JDBC
and SQLJ

db2jcc.jar
and sqlj.zip

JDBC 3.0
compliant

1.4.2

db2jcc4.jar
and sqlj4.zip

JDBC 4.0 and
earlier

6

� Type 2 drivers need to have a DB2 client installed

� Deprecated means it is still supported, but no long er enhanced

� Note that the same file (for example db2jcc.jar) su pports type 2 and 4

Though there are several types of JDBC drivers such as type 1, 2, 3 and 4; type 1 and 3
are not commonly used, and DB2's support of these types has been deprecated. For type
2, there are two drivers as we will describe shortly, but one of them is also deprecated.

Type 2 and type 4 are supported with DB2 software, as shown in the Table. Type 2 drivers
need to have a DB2 client installed, as the driver uses it to establish communication to the
database. Type 4 is a pure Java client, so there is no need for a DB2 client, but the driver
must be installed on the machine where the JDBC application is running.

As mentioned earlier and shown also in the Table, Type 2 is provided with two different
drivers; however the DB2 JDBC Type 2 Driver for Linux, UNIX and Windows, with filename
db2java.zip is deprecated.

 54

54 © 2011 IBM Corporation
05/30/2011 Template Documentation

JDBC / SQLJ – Supported drivers

� db2java.zip, db2jcc.jar, sqlj.zip, db2jcc4.jar and sqlj4.zip are included with:
� IBM DB2 for Linux, UNIX and Windows servers

� IBM Data Server Client

� IBM Data Server Runtime Client

� IBM Data Server Driver for JDBC and SQLJ

When you install a DB2 server, a DB2 client or the IBM Data Server Driver for JDBC and
SQLJ, the db2jcc.jar and sqlj.zip files compliant with JDBC 3.0 are automatically added to
your classpath.

 55

55 © 2011 IBM Corporation
05/30/2011 Template Documentation

Thank you!

Use the forum in the db2university.com course AA001EN if you have technical questions
about the materials covered in this course. Fellow students, faculty and IBMers can help
you!

