

 1

1 © 2011 IBM Corporation

Data concurrency and locking

IBM Information Management Cloud Computing Center of Competence
IBM Canada Labs

 2

2 © 2011 IBM Corporation
05/26/2011 Template Documentation

• Transactions

• Concurrency & Locking

• Lock Wait

• Deadlocks

Agenda

 3

3 © 2011 IBM Corporation
05/26/2011 Template Documentation

• Reading materials

• Getting started with DB2 Express-C eBook
• Chapter 13: Concurrency and locking

• Videos

• db2university.com course AA001EN
• Lesson 8: Data concurrency and locking

Supporting reading material & videos

If you need more details about this topic, refer to this supporting material:

- Chapter 13: Concurrency and locking of the book “Getting started with
DB2 Express-C 3rd Edition” and

- Lesson 8 of the db2university.com course AA001EN DB2 Academic
Training

 4

4 © 2011 IBM Corporation
05/26/2011 Template Documentation

• Transactions

• Concurrency & Locking

• Lock Wait

• Deadlocks

Agenda

 5

5 © 2011 IBM Corporation
05/26/2011 Template Documentation

What is a transaction?

Your bank account Your Mom’s bank account

Balance = $1000 Balance = $200

Transfer $100 from your account to your Mom’s accou nt:

 - Debit $100 from your bank account (Subtract $100)
 - Credit $100 to your mom's bank account (Add $100)

A transaction could be better explained using this simple example: Let’s say, you have
access to two accounts at a bank; one is your bank account, and the other one is your
mom's bank account. In your bank account, there is a balance of one thousand dollars. In
your mom's account, there is a balance of two hundred dollars. Now, let’s say you want to
transfer one hundred dollars from your account to your mom's account. Behind the scenes
100 hundred dollars will first be debitted from your account and then 100 dollars will be
creditted to your mom's account. However, what would happen if the 100 dollars from your
account is debitted and all of a sudden there is a power outage and the operation is not
completed?. You just lost 100 hundred dollars!. As you can tell, such scenario cannot be
allowed to happen in any real life application. To solve this problem, both operations, the
debit, and the credit should be treated as one single unit; as a transaction.

 6

6 © 2011 IBM Corporation
05/26/2011 Template Documentation

What is a transaction? (cont'd)

• One or more SQL statements altogether treated as one
single unit

• Also known as a Unit of Work (UOW)

• A transaction starts with any SQL statement and ends with
a COMMIT or ROLLBACK

• COMMIT statement makes changes permanent to the
database

• ROLLBACK statement reverses changes

• COMMIT and ROLLBACK statements release all locks

So, a transaction is basically treating one or more SQL statements as one unit. If one
statement of a transaction fails, the entire transaction fails. A transaction is also known as
Unit of work (UOW). As we will see in the next slide, a transaction starts with any SQL
statement and ends with a COMMIT or ROLLBACK statement. A COMMIT statement
makes changes permanent to the database while a ROLLBACK statement reverses
changes. Both statements release all locks taken on rows.

 7

7 © 2011 IBM Corporation
05/26/2011 Template Documentation

Example of transactions

INSERT INTO employee VALUES (100, 'JOHN')
INSERT INTO employee VALUES (200, 'MANDY')
COMMIT

DELETE FROM employee WHERE name='MANDY'
UPDATE employee SET empID=101 where name='JOHN'
ROLLBACK

UPDATE employee SET name='JACK' where empID=100
COMMIT

ROLLBACK

First SQL statement
starts transaction

No changes
applied due to

ROLLBACK

There is nothing to
rollback

For example in this slide you can see several transactions. For the first transaction, two
rows are inserted into the employee table. The transaction ends with the COMMIT
statement which guarantees these two rows (for 'JOHN' and 'MANDY') are stored in the
table. The next transaction starts with the DELETE statement and ends with a ROLLBACK.
Since it ends with a ROLLBACK, any changes made are not actually applied, and the table
remains exactly as it was before the transaction started. Then we have another transaction
that updates the name to be 'JACK' for empID=100. Since this transaction ends with a
COMMIT, the change is applied as highlighted in yellow in the slide. Finally, there is one
last short transaction consisting of a ROLLBACK. This transaction of one statement would
have no effect, since nothing can be rolled back at this time.

 8

8 © 2011 IBM Corporation
05/26/2011 Template Documentation

Transactions – ACID rules

• Atomicity

• All statements in the transaction are treated as a unit.

• If the transaction completes successfully, everything is committed

• If the transaction fails, everything done up to the point of failure is rolled back.

• Consistency

• Any transaction will take the data from one consistent state to another, so only
valid consistent data is stored in the database

• Isolation

• Concurrent transactions cannot interfere with each other

• Durability

• Committed transactions have their changes persisted in the database

ACID rules guarantee database transactions are processed in a reliable way.

The “Isolation” rule is discussed in more detail in the next slides.

Consistency and Durability are also discussed in more detail in the presentation about
“Backup and recovery”

 9

9 © 2011 IBM Corporation
05/26/2011 Template Documentation

• Transactions

• Concurrency & Locking

• Lock Wait

• Deadlocks

Agenda

 10

10 © 2011 IBM Corporation
05/26/2011 Template Documentation

Concurrency and Locking

ID Name Age

3 Peter 33

5 John 23

22 Mary 22

35 Ann 55

App A

App B

App C

App D

• Concurrency:

• Multiple users accessing the same resources at the
same time

• Locking:

• Mechanism to ensure data integrity and consistency

Let's move on, and provide an overview of concurrency and locking. Let's say there are
several applications; application A, B, C and D trying to access the same row in the same
table. Now if there was no concurrency control, then you may have that all of these
applications could be doing an update on this same row at the same time. So at the end
what will be the final result? It would be hard to tell. Concurrency, in general means that
several applications can work at the same time on the same database, or same tables on
the database while keeping the data consistent. Locking is how a database management
system can ensure data integrity and consistency. So in this example, if application B is the
first one to perform the update on the 2nd row, it would immediately take a lock on the row,
and the other applications would have to wait until this lock is released.

 11

11 © 2011 IBM Corporation
05/26/2011 Template Documentation

Locking

• Locks are acquired automatically as needed to support a
transaction based on “isolation levels”

• COMMIT and ROLLBACK statements release all locks

• Two basic types of locks:

• Share locks (S locks) – acquired when an application wants to
read and prevent others from updating the same row

• Exclusive locks (X locks) – acquired when an application
updates, inserts, or deletes a row

Locks are normally acquired automatically for you based on isolation levels that you can
set. Isolation levels are like 'policies' on how locks are taken, and will be discussed in more
detail later on. As mentioned earlier, a COMMIT or ROLLBACK statement will release all
locks on a row. There are several types of locks in DB2. For simplicity, we only show the
main two: An 'S' lock for 'share' is taken when you perform READ operations such as when
using a SELECT statement. An 'X' lock for 'exclusive' is taken when you perform
operations such as a DELETE, UPDATE, or INSERT.

 12

12 © 2011 IBM Corporation
05/26/2011 Template Documentation

Problems if there is no concurrency control

• Lost update

• Uncommitted read

• Non-repeatable read

• Phantom read

Concurrency allows users to access a database simultaneously, so that several
applications can work on the same database at the same time while the data remains
consistent. There are several problems that can happen if there is no concurrency control.
The four problems that can happen are: lost update, uncommitted read, non-repeatable
read, and phantom read. We explain each of these problems in more detail next.

 13

13 © 2011 IBM Corporation
05/26/2011 Template Documentation

Lost update

seat name ...

7C _____

7B _____

...

reservations

App A App B

Let's use the following example to explain the “Lost update” problem. In this example, say
you have a table called “reservations “ which has the column “seat”, the column “name”,
and so on.

 14

14 © 2011 IBM Corporation
05/26/2011 Template Documentation

Lost update

update reservations
 set name = 'John'
 where seat = '7C'

seat name ...

7C _____

7B _____

...

reservations

App A App B

Now say application “A” updates the table “reservation”, so that the name for seat 7C is

 15

15 © 2011 IBM Corporation
05/26/2011 Template Documentation

Lost update

update reservations
 set name = 'John'
 where seat = '7C'

seat name ...

7C _____

7B _____

...

reservations

John

App A App B

changed to “John”.

 16

16 © 2011 IBM Corporation
05/26/2011 Template Documentation

Lost update

update reservations
 set name = 'Mary'
 where seat = '7C'

update reservations
 set name = 'John'
 where seat = '7C'

seat name ...

7C _____

7B _____

...

reservations

John

App A App B

Now assume there is another application “B” at the same time is trying to do the same but

 17

17 © 2011 IBM Corporation
05/26/2011 Template Documentation

Lost update

update reservations
 set name = 'Mary'
 where seat = '7C'

update reservations
 set name = 'John'
 where seat = '7C'

seat name ...

7C _____

7B _____

...

reservations

JohnMary

App A App B

using the name “Mary”.

 18

18 © 2011 IBM Corporation
05/26/2011 Template Documentation

Lost update

update reservations
 set name = 'Mary'
 where seat = '7C'

update reservations
 set name = 'John'
 where seat = '7C'

seat name ...

7C _____

7B _____

...

reservations

JohnMary

App A App B

?

Assuming application B issued the update slightly later than application A, the last value for
the name would be “Mary”, which means that the first update from application A was a “lost
update”.

If we repeat the same process again, but this time application B performs the update first
followed by application A, in that case the last value for the name would be “John”, and the
first update from application B would be lost.

So basically without some type of control, we would lose an update from the first
application.

 19

19 © 2011 IBM Corporation
05/26/2011 Template Documentation

Uncommitted read (also known as “dirty read”)

seat name ...

7C _____

7B _____

...

reservations

App A App B

To explain the second problem called “Uncommitted read”, let's use the same example as
before.

 20

20 © 2011 IBM Corporation
05/26/2011 Template Documentation

Uncommitted read (also known as “dirty read”)

seat name ...

7C _____

7B _____

...

reservations

update reservations
 set name = 'John'
 where seat = '7C'

App A App B

Application A performs an update so that “John” is the name that corresponds to seat '7C'.

 21

21 © 2011 IBM Corporation
05/26/2011 Template Documentation

Uncommitted read (also known as “dirty read”)

seat name ...

7C _____

7B _____

...

reservations

update reservations
 set name = 'John'
 where seat = '7C'

John

App A App B

 22

22 © 2011 IBM Corporation
05/26/2011 Template Documentation

Uncommitted read (also known as “dirty read”)

seat name ...

7C _____

7B _____

...

reservations

update reservations
 set name = 'John'
 where seat = '7C'

John

App A App B

Select name
 from reservations
 where seat is '7C'

Next, application B issues a SELECT which would retrieve the name of this same record,

 23

23 © 2011 IBM Corporation
05/26/2011 Template Documentation

Uncommitted read (also known as “dirty read”)

seat name ...

7C _____

7B _____

...

reservations

update reservations
 set name = 'John'
 where seat = '7C'

John

App A App B

Select name
 from reservations
 where seat is '7C'

John

so that output is “John”.

 24

24 © 2011 IBM Corporation
05/26/2011 Template Documentation

Uncommitted read (also known as “dirty read”)

seat name ...

7C _____

7B _____

...

reservations

update reservations
 set name = 'John'
 where seat = '7C'

John

App A App B

Select name
 from reservations
 where seat is '7C'

John

Roll back

Next, application A issues a ROLLBACK

 25

25 © 2011 IBM Corporation
05/26/2011 Template Documentation

Uncommitted read (also known as “dirty read”)

seat name ...

7C _____

7B _____

...

reservations

update reservations
 set name = 'John'
 where seat = '7C'

App A App B

Select name
 from reservations
 where seat is '7C'

John

Roll back

which means any changes made would be discarded, so the corresponding name for seat
'7C' is back to NULL.

 26

26 © 2011 IBM Corporation
05/26/2011 Template Documentation

Uncommitted read (also known as “dirty read”)

John

Roll back

seat name ...

7C _____

7B _____

...

reservations

update reservations
 set name = 'John'
 where seat = '7C'

Select name
 from reservations
 where seat is '7C'

App A App B

 Further processing in App
B uses incorrect /

uncommitted value of
“John”

 Further processing in App
B uses incorrect /

uncommitted value of
“John”

If application B continues further processing using “John”, it's actually using data that was
not committed, and is incorrect.

This problem is called “uncommitted read”.

 27

27 © 2011 IBM Corporation
05/26/2011 Template Documentation

Non-repeatable read

seat name ...

7C _____

7B _____

...

reservations

App A App B

Let's move on to another problem called ‘non-repeatable read’.

In this example we have the same reservation table, and the same applications.

 28

28 © 2011 IBM Corporation
05/26/2011 Template Documentation

Non-repeatable read

seat name ...

7C _____

7B _____

...

reservations

select seat
 from reservations
 where name is NULL

App A App B

Application A is this time issuing a SELECT statement

 29

29 © 2011 IBM Corporation
05/26/2011 Template Documentation

Non-repeatable read

seat name ...

7C _____

7B _____

...

reservations

select seat
 from reservations
 where name is NULL

App A App B

7C

7B

which retrieves two seats '7C','7B'.

 30

30 © 2011 IBM Corporation
05/26/2011 Template Documentation

Non-repeatable read

seat name ...

7C _____

7B _____

...

reservations

select seat
 from reservations
 where name is NULL

App A App B

7C

7B

update reservations
 set name = 'John'
 where seat = '7C'

Then application B issues an update,

 31

31 © 2011 IBM Corporation
05/26/2011 Template Documentation

Non-repeatable read

seat name ...

7C _____

7B _____

...

reservations

select seat
 from reservations
 where name is NULL

App A App B

7C

7B

John

update reservations
 set name = 'John'
 where seat = '7C'

so seat '7C' is assigned a passenger with name 'John'.

 32

32 © 2011 IBM Corporation
05/26/2011 Template Documentation

Non-repeatable read

seat name ...

7C _____

7B _____

...

reservations

select seat
 from reservations
 where name is NULL

App A App B

7C

7B

John

update reservations
 set name = 'John'
 where seat = '7C'

 ...
select seat
 from reservations
 where name is NULL

When application A, within the same transaction issues another SELECT which is exactly
the same as the first one it had issued,

 33

33 © 2011 IBM Corporation
05/26/2011 Template Documentation

Non-repeatable read

seat name ...

7C _____

7B _____

...

reservations

select seat
 from reservations
 where name is NULL

App A App B

7C

7B

John

update reservations
 set name = 'John'
 where seat = '7C'

 ...
select seat
 from reservations
 where name is NULL

7B

this application will now get one seat: '7B'.

 34

34 © 2011 IBM Corporation
05/26/2011 Template Documentation

Non-repeatable read

seat name ...

7C _____

7B _____

...

reservations

select seat
 from reservations
 where name is NULL

John

App A App B

update reservations
 set name = 'John'
 where seat = '7C'

7C

7B

 ...
select seat
 from reservations
 where name is NULL

7B

 The same SELECT (read) returns a
different result: Less rows (in this
case '7C' doesn't show anymore).

This is a non-repeatable read

 The same SELECT (read) returns a
different result: Less rows (in this
case '7C' doesn't show anymore).

This is a non-repeatable read

So it's not a repeatable read: Issuing the exact same SELECT statement within a
transaction leads to different results.

 35

35 © 2011 IBM Corporation
05/26/2011 Template Documentation

Phantom read

seat name ...

7C _____

7B _____

...

reservations

Susan

App A App B

Now let's talk about the last problem called ‘phantom read’.

Assume the reservations table has passenger 'Susan' assigned to seat '7C'.

 36

36 © 2011 IBM Corporation
05/26/2011 Template Documentation

Phantom read

seat name ...

7C _____

7B _____

...

reservations

select seat
 from reservations
 where name is NULL

Susan

App A App B

When application A executes a SELECT to retrieve all seats not assigned (where name is
NULL),

 37

37 © 2011 IBM Corporation
05/26/2011 Template Documentation

Phantom read

seat name ...

7C _____

7B _____

...

reservations

select seat
 from reservations
 where name is NULL

Susan

App A App B

7B

it will return only one value: '7B'.

 38

38 © 2011 IBM Corporation
05/26/2011 Template Documentation

Phantom read

seat name ...

7C _____

7B _____

...

reservations

select seat
 from reservations
 where name is NULL

Susan

App A App B

update reservations
 set name = NULL
 where seat = '7C'

7B

Next application B updates seat '7C'

 39

39 © 2011 IBM Corporation
05/26/2011 Template Documentation

Phantom read

seat name ...

7C _____

7B _____

...

reservations

select seat
 from reservations
 where name is NULL

App A App B

update reservations
 set name = NULL
 where seat = '7C'

7B

setting the name to NULL.

 40

40 © 2011 IBM Corporation
05/26/2011 Template Documentation

Phantom read

seat name ...

7C _____

7B _____

...

reservations

select seat
 from reservations
 where name is NULL

App A App B

update reservations
 set name = NULL
 where seat = '7C'

 ...
select seat
 from reservations
 where name is NULL

7B

If Application A executes again the exact same SELECT statement within the same
transaction,

 41

41 © 2011 IBM Corporation
05/26/2011 Template Documentation

Phantom read

seat name ...

7C _____

7B _____

...

reservations

select seat
 from reservations
 where name is NULL

App A App B

update reservations
 set name = NULL
 where seat = '7C'

7C

7B

 ...
select seat
 from reservations
 where name is NULL

7B

it will now retrieve two rows: '7C' and ''7B'.

 42

42 © 2011 IBM Corporation
05/26/2011 Template Documentation

Phantom read

seat name ...

7C _____

7B _____

...

reservations

select seat
 from reservations
 where name is NULL

App A App B

update reservations
 set name = NULL
 where seat = '7C'

7C

7B

 ...
select seat
 from reservations
 where name is NULL

7B

The same SELECT (read) returns a
different result: More rows (phantom

rows, in this case '7C', is shown)
This is a phantom read

The same SELECT (read) returns a
different result: More rows (phantom

rows, in this case '7C', is shown)
This is a phantom read

So in this case the same SELECT in the same transaction is retrieving one more row, a
“phantom' row. This is why this case is called “Phantom Read”. It is very similar to a non-
repeatable case. In non-repeatable read you get less rows, while for “Phantom Read” you
get more rows.

 43

43 © 2011 IBM Corporation
05/26/2011 Template Documentation

Isolation levels

• “Policies” to control when locks are taken

• DB2 provides different levels of protection to isol ate data

• Uncommitted Read (UR)

• Cursor Stability (CS)

• Currently committed (CC)

• Read Stability (RS)

• Repeatable Read (RR)

You can think of isolation levels as policies on how you want DB2 to work with locks.

There are different isolation levels and the names are similar to the problems that we
discussed earlier. So we have:

- Uncommitted read or UR, also known as dirty read,
- Cursor Stability or CS,
- Read Stability or RS,
- Repeatable Read or RR.

 44

44 © 2011 IBM Corporation
05/26/2011 Template Documentation

Setting the isolation levels

• Isolation level can be specified at many levels

• Session (application),

• Connection,

• Statement

• For statement level, use the WITH {RR, RS, CS, UR} clause:

• For embedded SQL, the level is set at bind time

• For dynamic SQL, the level is set at run time

 SELECT COUNT(*) FROM tab1 WITH UR

You can set these isolation levels at different levels:
- You can set at the application level or session level, where the default is Cursor Stability.
- You can set at the Connection level;
- you can set at the Statement level.
- If you are using embedded SQL, you can set it at bind time.
- For dynamic SQL, you can set it at run time.

Example Scenario:

Application needs to get a "rough" count of how many rows are in table. Performance is of
utmost importance. Cursor Stability isolation level is required with the exception of one
SQL statement:

SELECT COUNT(*) FROM tab1 WITH UR

 45

45 © 2011 IBM Corporation
05/26/2011 Template Documentation

Comparing isolation levels

Let's compare how each of these isolation levels work in terms of holding and releasing
locks.

The figure shows a table on the left side with six rows. Let's see what happens when your
application fetches rows from this table using different isolation levels.

Let's start with UR. As you can see, in this case no locks are taken as you fetch rows.

Now let's see what happens when using isolation level CS which is the default: You fetch
row 1, and a lock is taken. When you move on to fetch row 2, the lcok is release d from row
1, and a lock is taken on row 2. When you move on to fetch row 3, the lock from row 2 is
released, and a lock on row 3 is taken, and so on.

Now let's see what happens when using isolation RS or RR: You fetch row 1, and a lock is
taken. When you move on to fetch row 2, the lock in row 1 still is held, and now a lock in
row 2 is taken. When you move to fetch row 3, the lock in row 1 and row 2 still are held,
and now a lock in row 3 is taken, and so on.

So as you can see, isolation level UR allows for maximum concurrency. While, RR or RS
allows for the least concurrency. At the same time, UR provides the least accuracy in terms
of results while RS or RR provides the most accuracy.

 46

46 © 2011 IBM Corporation
05/26/2011 Template Documentation

Cursor stability with currently committed (CC) semantics

• Cursor stability with currently committed semantics is the default
isolation level

• Use cur_commit db cfg parameter to enable/disable

• Avoids timeouts and deadlocks

Cursor
stability

Cursor stability with
currently committed

When using CS, there are two different behaviors (which are described in more detail in the
next slide).

The behavior that prevents timeouts/deadlocks more is the one where “currently
committed” is enabled.

The main difference is highlighted (row #3 in both tables):

Without currently committed, a writer would block a reader (i.e: An UPDATE would block a
SELECT), so basically, the SELECT would have to wait.

With currently committed a writer does NOT block a reader. So even if one application is
doing an UPDATE on a row, another application can do a SELECT on the same row.

 47

47 © 2011 IBM Corporation
05/26/2011 Template Documentation

Cursor stability with currently committed (CC) semantics
Cursor stability without currently committed

seat name ...

7C Susan

7B _____

...

reservations
App A App B

Cursor stability with currently committed (Default behavior)

seat name ...

7C Susan

7B _____

...

reservations
App A App B

This slide shows the different behaviors when working with CS. At the top we will explain
the behavior using CS without currently committed. And at the bottom we will explain the
behavior using CS with currently committed.

 48

48 © 2011 IBM Corporation
05/26/2011 Template Documentation

Cursor stability with currently committed (CC) semantics
Cursor stability without currently committed

seat name ...

7C Susan

7B _____

...

reservations
App A App B

Cursor stability with currently committed (Default behavior)

seat name ...

7C Susan

7B _____

...

reservations
App A App B

X
update
 reservations
 set name = 'John'
 where seat = '7C'

So let's start at the top. Let's say an application A performs an UPDATE which will have to
take an X (exclusive) lock on the row.

 49

49 © 2011 IBM Corporation
05/26/2011 Template Documentation

Cursor stability with currently committed (CC) semantics
Cursor stability without currently committed

seat name ...

7C Susan

7B _____

...

reservations
App A App B

Cursor stability with currently committed (Default behavior)

seat name ...

7C Susan

7B _____

...

reservations
App A App B

X
update
 reservations
 set name = 'John'
 where seat = '7C'

John

 50

50 © 2011 IBM Corporation
05/26/2011 Template Documentation

Cursor stability with currently committed (CC) semantics
Cursor stability without currently committed

seat name ...

7C Susan

7B _____

...

reservations
App A App B

X
update
 reservations
 set name = 'John'
 where seat = '7C'

select name
 from reservations
 where seat = '7C'

S

Cursor stability with currently committed (Default behavior)

seat name ...

7C Susan

7B _____

...

reservations
App A App B

John

When application B running in CS without CC (currently committed) tries to perform a
SELECT on the same row, it will request an 'S' (Shared) lock; which is not compatible with
an X lock,

 51

51 © 2011 IBM Corporation
05/26/2011 Template Documentation

Cursor stability with currently committed (CC) semantics
Cursor stability without currently committed

seat name ...

7C Susan

7B _____

...

reservations
App A App B

X
update
 reservations
 set name = 'John'
 where seat = '7C'

select name
 from reservations
 where seat = '7C'

S

Cursor stability with currently committed (Default behavior)

seat name ...

7C Susan

7B _____

...

reservations
App A App B

John

Lock
Wait

and thus it will have to wait.

 52

52 © 2011 IBM Corporation
05/26/2011 Template Documentation

Cursor stability with currently committed (CC) semantics
Cursor stability without currently committed

seat name ...

7C Susan

7B _____

...

reservations
App A App B

X
update
 reservations
 set name = 'John'
 where seat = '7C'

select name
 from reservations
 where seat = '7C'

S

Cursor stability with currently committed (Default behavior)

seat name ...

7C Susan

7B _____

...

reservations
App A App B

John

Lock
Wait

App B hangs until App A commits or rolls back which releases X lock

To the user, it will look as if application B is hanging. Only when application A commits, or
rolls back will application B will be able to proceed with the SELECT.

 53

53 © 2011 IBM Corporation
05/26/2011 Template Documentation

Cursor stability with currently committed (CC) semantics
Cursor stability without currently committed

seat name ...

7C Susan

7B _____

...

reservations
App A App B

X
update
 reservations
 set name = 'John'
 where seat = '7C'

select name
 from reservations
 where seat = '7C'

S

Cursor stability with currently committed (Default behavior)

seat name ...

7C Susan

7B _____

...

reservations
App A App B

John

Lock
Wait

App B hangs until App A commits or rolls back which releases X lock

X
update
 reservations
 set name = 'John'
 where seat = '7C'

Now, let's see how''s the behavior at the bottom with CS using CC:
Using the same case, application A performs an update and takes a exclusive lock (X
lock).

 54

54 © 2011 IBM Corporation
05/26/2011 Template Documentation

Cursor stability with currently committed (CC) semantics
Cursor stability without currently committed

seat name ...

7C Susan

7B _____

...

reservations
App A App B

X
update
 reservations
 set name = 'John'
 where seat = '7C'

select name
 from reservations
 where seat = '7C'

S

Cursor stability with currently committed (Default behavior)

seat name ...

7C Susan

7B _____

...

reservations
App A App B

John

Lock
Wait

App B hangs until App A commits or rolls back which releases X lock

X
update
 reservations
 set name = 'John'
 where seat = '7C'

John

 55

55 © 2011 IBM Corporation
05/26/2011 Template Documentation

Cursor stability with currently committed (CC) semantics
Cursor stability without currently committed

seat name ...

7C Susan

7B _____

...

reservations
App A App B

X
update
 reservations
 set name = 'John'
 where seat = '7C'

select name
 from reservations
 where seat = '7C'

S

Cursor stability with currently committed (Default behavior)

seat name ...

7C Susan

7B _____

...

reservations
App A App B

John

Lock
Wait

App B hangs until App A commits or rolls back which releases X lock

X
update
 reservations
 set name = 'John'
 where seat = '7C'

John select name
 from reservations
 where seat = '7C'

S

When application B issues a SELECT on the same row, it is allowed to proceed,

 56

56 © 2011 IBM Corporation
05/26/2011 Template Documentation

Cursor stability with currently committed (CC) semantics
Cursor stability without currently committed

seat name ...

7C Susan

7B _____

...

reservations
App A App B

X
update
 reservations
 set name = 'John'
 where seat = '7C'

select name
 from reservations
 where seat = '7C'

S

Cursor stability with currently committed (Default behavior)

seat name ...

7C Susan

7B _____

...

reservations
App A App B

John

Lock
Wait

App B hangs until App A commits or rolls back which releases X lock

X
update
 reservations
 set name = 'John'
 where seat = '7C'

John select name
 from reservations
 where seat = '7C'

S

App B retrieves currently committed value of 'Susan'

though it will retrieve the currently committed value, which in this example was “Susan'.
So in this case, the writer (update) does not block the reader (SELECT)

Note: If app B were using UR, the value retrieved would've been 'John” which is the
uncommitted value; but under CS, you only can retrieve committed values.

 57

57 © 2011 IBM Corporation
05/26/2011 Template Documentation

Comparing and choosing an isolation level

Isolation Level Lost
update

Dirty
Read

Non-repeatable
Read

Phantom Read

Repeatable Read (RR) - - - -
ReadStability (RS) - - - Possible

Cursor Stability (CS) - - Possible Possible

Uncommitted Read (UR) - Possible Possible Possible

Application Type High data stability
required

High data stability not
required

Read-write transactions RS CS

Read-only transactions RS or RR UR

This chart summarizes which concurrency problems are resolved by which isolation level.
The “lost update” problem is resolved by all isolation levels.

The table at the bottom provides you with an idea of when to use which type of isolation
level, depending on your application type and “stability” of your data, meaning, how
accurate you want it to be.

 58

58 © 2011 IBM Corporation
05/26/2011 Template Documentation

• Transactions

• Concurrency & Locking

• Lock Wait

• Deadlocks

Agenda

 59

59 © 2011 IBM Corporation
05/26/2011 Template Documentation

Lock wait

■ By default, an application waits indefinitely to obtain any
needed locks

■ LOCKTIMEOUT (db cfg):

– Specifies the number of seconds to wait for a lock

– Default value is -1 or infinite wait

■ Example: (Same as when using isolation CS without CC):

seat name ...

7C Susan

7B _____

...

reservations
App A App B

You have already seen how LOCK WAIT works when we talked about Cursor stability
without Currently Committed. Let's revisit that example:

 60

60 © 2011 IBM Corporation
05/26/2011 Template Documentation

Lock wait

■ By default, an application waits indefinitely to obtain any
needed locks

■ LOCKTIMEOUT (db cfg):

– Specifies the number of seconds to wait for a lock

– Default value is -1 or infinite wait

■ Example: (Same as when using isolation CS without CC):

seat name ...

7C Susan

7B _____

...

reservations
App A App B

X
update
 reservations
 set name = 'John'
 where seat = '7C'

Application A performs an update taking an X lock.

 61

61 © 2011 IBM Corporation
05/26/2011 Template Documentation

Lock wait

■ By default, an application waits indefinitely to obtain any
needed locks

■ LOCKTIMEOUT (db cfg):

– Specifies the number of seconds to wait for a lock

– Default value is -1 or infinite wait

■ Example: (Same as when using isolation CS without CC):

seat name ...

7C Susan

7B _____

...

reservations
App A App B

X
update
 reservations
 set name = 'John'
 where seat = '7C'

John

 62

62 © 2011 IBM Corporation
05/26/2011 Template Documentation

Lock wait

■ By default, an application waits indefinitely to obtain any
needed locks

■ LOCKTIMEOUT (db cfg):

– Specifies the number of seconds to wait for a lock

– Default value is -1 or infinite wait

■ Example: (Same as when using isolation CS without CC):

seat name ...

7C Susan

7B _____

...

reservations
App A App B

X
update
 reservations
 set name = 'John'
 where seat = '7C'

John select name
 from reservations
 where seat = '7C'

S

Application B wants to read from the same row (which would take an S lock) but it cannot
since X and S locks are not compatible in CS without CC.

 63

63 © 2011 IBM Corporation
05/26/2011 Template Documentation

Lock wait

■ By default, an application waits indefinitely to obtain any
needed locks

■ LOCKTIMEOUT (db cfg):

– Specifies the number of seconds to wait for a lock

– Default value is -1 or infinite wait

■ Example: (Same as when using isolation CS without CC):

seat name ...

7C Susan

7B _____

...

reservations
App A App B

X
update
 reservations
 set name = 'John'
 where seat = '7C'

John select name
 from reservations
 where seat = '7C'

S

Lock
Wait

Therefore, application B must wait.

How long will it wait?

 64

64 © 2011 IBM Corporation
05/26/2011 Template Documentation

Lock wait

■ By default, an application waits indefinitely to obtain any
needed locks

■ LOCKTIMEOUT (db cfg):

– Specifies the number of seconds to wait for a lock

– Default value is -1 or infinite wait

■ Example: (Same as when using isolation CS without CC):

seat name ...

7C Susan

7B _____

...

reservations
App A App B

X
update
 reservations
 set name = 'John'
 where seat = '7C'

select name
 from reservations
 where seat = '7C'

SJohn

App B waits “LOCKTIMEOUT” seconds to get 'S' lock on first row

Lock
Wait

This is set by the parameter LOCKTIMEOUT. By default, this parameter is set to -1, which
means infinite wait.

 65

65 © 2011 IBM Corporation
05/26/2011 Template Documentation

• Transactions

• Concurrency & Locking

• Lock Wait

• Deadlocks

Agenda

 66

66 © 2011 IBM Corporation
05/26/2011 Template Documentation

Deadlocks
■ Occurs when two or more applications wait indefinitely for a resource

■ Each application is holding a resource that the other needs

■ Waiting is never resolved

■ In the example, assume we are using isolation CS without CC

seat name ...

7C Susan

7B _____

...

8E Raul

9F Jin

App A App B
reservations

The example shows how a deadlock occurs. Note that the operations within App A occur
within one transaction. Similarly for App B. This is important to note because, for example,
if App A was doing an UPDATE, and then it COMMITTED, it would release all locks and we
would have a different scenario altogether.

 67

67 © 2011 IBM Corporation
05/26/2011 Template Documentation

Deadlocks

seat name ...

7C Susan

7B _____

...

8E Raul

9F Jin

App A App B

X
update
 reservations
 set name = 'John'
 where seat = '7C'

reservations

■ Occurs when two or more applications wait indefinitely for a resource

■ Each application is holding a resource that the other needs

■ Waiting is never resolved

■ In the example, assume we are using isolation CS without CC

App A performs an update, so takes an X lock on row with seat 7C

 68

68 © 2011 IBM Corporation
05/26/2011 Template Documentation

Deadlocks

seat name ...

7C Susan

7B _____

...

8E Raul

9F Jin

App A App B

X
update
 reservations
 set name = 'John'
 where seat = '7C'

reservations

John

■ Occurs when two or more applications wait indefinitely for a resource

■ Each application is holding a resource that the other needs

■ Waiting is never resolved

■ In the example, assume we are using isolation CS without CC

The row is updated with “John”, though the change is not yet committed.

 69

69 © 2011 IBM Corporation
05/26/2011 Template Documentation

Deadlocks

seat name ...

7C Susan

7B _____

...

8E Raul

9F Jin

App A App B

X
update
 reservations
 set name = 'John'
 where seat = '7C'

reservations

John
update
 reservations
 set name = 'Sue'
 where seat = '9F'

X

■ Occurs when two or more applications wait indefinitely for a resource

■ Each application is holding a resource that the other needs

■ Waiting is never resolved

■ In the example, assume we are using isolation CS without CC

App B performs an update on another row, the one with seat '9F'. It also will take an X lock
on this row

 70

70 © 2011 IBM Corporation
05/26/2011 Template Documentation

Deadlocks

seat name ...

7C Susan

7B _____

...

8E Raul

9F Jin

App A App B

X
update
 reservations
 set name = 'John'
 where seat = '7C'

reservations

John
update
 reservations
 set name = 'Sue'
 where seat = '9F'

XSue

■ Occurs when two or more applications wait indefinitely for a resource

■ Each application is holding a resource that the other needs

■ Waiting is never resolved

■ In the example, assume we are using isolation CS without CC

The row is updated with “Sue”, though the change is not yet committed.

 71

71 © 2011 IBM Corporation
05/26/2011 Template Documentation

Deadlocks

seat name ...

7C Susan

7B _____

...

8E Raul

9F Jin

App A App B

X
update
 reservations
 set name = 'John'
 where seat = '7C'

reservations

John
update
 reservations
 set name = 'Sue'
 where seat = '9F'

XSueS

...
select name
 from reservations
 where seat = '9F'

■ Occurs when two or more applications wait indefinitely for a resource

■ Each application is holding a resource that the other needs

■ Waiting is never resolved

■ In the example, assume we are using isolation CS without CC

App A issues a SELECT on the row with seat 9F, so it wants to take an S lock on the row.

 72

72 © 2011 IBM Corporation
05/26/2011 Template Documentation

Deadlocks

seat name ...

7C Susan

7B _____

...

8E Raul

9F Jin

App A App B

X
update
 reservations
 set name = 'John'
 where seat = '7C'

reservations

John
update
 reservations
 set name = 'Sue'
 where seat = '9F'

XSueS

...
select name
 from reservations
 where seat = '9F'

Lock
Wait

■ Occurs when two or more applications wait indefinitely for a resource

■ Each application is holding a resource that the other needs

■ Waiting is never resolved

■ In the example, assume we are using isolation CS without CC

App A hangs. It has to wait since App B has an X lock on row with seat 9F

 73

73 © 2011 IBM Corporation
05/26/2011 Template Documentation

Deadlocks

seat name ...

7C Susan

7B _____

...

8E Raul

9F Jin

App A App B

X
update
 reservations
 set name = 'John'
 where seat = '7C'

reservations

John
update
 reservations
 set name = 'Sue'
 where seat = '9F'

XSueS

...
select name
 from reservations
 where seat = '9F'

Lock
Wait

...
select name
 from reservations
 where seat = '7C'

S

■ Occurs when two or more applications wait indefinitely for a resource

■ Each application is holding a resource that the other needs

■ Waiting is never resolved

■ In the example, assume we are using isolation CS without CC

App B issues a SELECT on the row with seat 7C, so it wants to take an S lock on the row.

 74

74 © 2011 IBM Corporation
05/26/2011 Template Documentation

Deadlocks

seat name ...

7C Susan

7B _____

...

8E Raul

9F Jin

App A App B

X
update
 reservations
 set name = 'John'
 where seat = '7C'

reservations

John
update
 reservations
 set name = 'Sue'
 where seat = '9F'

XSueS

...
select name
 from reservations
 where seat = '9F'

Lock
Wait

...
select name
 from reservations
 where seat = '7C'

S

Lock
Wait

■ Occurs when two or more applications wait indefinitely for a resource

■ Each application is holding a resource that the other needs

■ Waiting is never resolved

■ In the example, assume we are using isolation CS without CC

App B hangs. It has to wait since App A has an X lock on row with seat 7C

 75

75 © 2011 IBM Corporation
05/26/2011 Template Documentation

Deadlocks

seat name ...

7C Susan

7B _____

...

8E Raul

9F Jin

App A App B

X
update
 reservations
 set name = 'John'
 where seat = '7C'

...
select name
 from reservations
 where seat = '7C'

SJohn

S

...
select name
 from reservations
 where seat = '9F'

update
 reservations
 set name = 'Sue'
 where seat = '9F'

XSue

reservations

Lock
Wait

Lock
Wait

Deadlock!

■ Occurs when two or more applications wait indefinitely for a resource

■ Each application is holding a resource that the other needs

■ Waiting is never resolved

■ In the example, assume we are using isolation CS without CC

So we have a deadlock!. App A is waiting for App B to release its locks before it can
contineu, and App B is waiting for App A to release its locks before it can continue.

 76

76 © 2011 IBM Corporation
05/26/2011 Template Documentation

Deadlocks

■ Deadlocks are commonly caused by poor application
design

■ DB2 provides a deadlock detector
–Use DLCHKTIME (db cfg) to set the time interval for checking for

deadlocks

–When a deadlock is detected, DB2 uses an internal algorithm to pick
which transaction to roll back, and which one to continue.

–The transaction that is forced to roll back gets a SQL error. The
rollback causes all of its locks to be released

Normally deadlocks are situations that happen due to bad application design.
DB2 has a deadlock detector that checks every ‘x’ number of seconds if there is a
deadlock. ‘x’ is set by the deadlock check time (DLCHKTIME) db cfg parameter. When
the deadlock detector detects a deadlock, DB2 will use an internal algorithm to pick one of
the two applications that is causing the deadlock, and it will roll it back. The exact SQL
error the application that is rolled back receives is:
 SQLCODE -911 (SQLSTATE 40001), with reason code 2 (Where reason code ‘2’ means
“The transaction was rolled back due to a deadlock”. The other application will be allowed
to continue

 77

77 © 2011 IBM Corporation
05/26/2011 Template Documentation

Thank you!

Use the forum in the db2university.com course AA001EN if you have technical questions
about the materials covered in this course. Fellow students, faculty and IBMers can help
you!

