

 1

1 © 2011 IBM Corporation

DB2 backup and recovery
IBM Information Management Cloud Computing Center of Competence
IBM Canada Lab

Backing up data is vital for businesses. Loss of information can cause a major crisis or
worse, lead to business failure.

Common problems that can be encountered are:

- A system outage (Power failure, Hardware failure)

- Transaction failure (Users may inadvertently corrupt the database)

- Media failure (Disk drive becomes unusable)

- Disaster (Database facility damaged by fire, flooding or other catastrophe)

DB2 backup and recovery methods are designed to help you keep your information safe!

 2

2 © 2011 IBM Corporation
05/24/2011 Template Documentation

• Backup and recovery overview

• Database logging

• Backup

• Recovery

Agenda

 3

3 © 2011 IBM Corporation
05/24/2011 Template Documentation

• Reading materials

• Getting started with DB2 Express-C eBook
• Chapter 11: Backup and Recovery

• Videos

• db2university.com course AA001EN
• Lesson 10: Backup and Recovery

Supporting reading material & videos

If you need more details about this topic, refer to this supporting material:

• Chapter 11: Backup and Recovery of the book “Getting started with DB2
Express-C 3rd Edition” and

• Lesson 10 of the db2university.com course AA001EN DB2 Academic
Training

 4

4 © 2011 IBM Corporation
05/24/2011 Template Documentation

• Backup and recovery overview

• Database logging

• Backup

• Recovery

Agenda

 5

5 © 2011 IBM Corporation
05/24/2011 Template Documentation

Backup and recovery overview
■ At t1, a database backup operation is performed

■ At t2, a problem that damages the database occurs

■ At t3, all committed data is recovered

logs
Database

at

t1

Database

at

t1

database

Backup

Image

Perform a
database
backup

t1

Database continues to
process transactions.
Transactions are
recorded in log files

Disaster strikes, Database
is damaged

t2

Perform a database restore
using the backup image. The
restored database is
identical to the database at
t1

t3

After restore, reapply the
transactions committed
between t1 and t2 using the
log files.

In this figure we briefly talk about backup, restore, and roll forward commands, and the
concept of transaction logs.

In the timeline shown, let's say at time t1 you issue the backup command to make a copy
of your database. Then users continue working, and the information about their activities is
kept at all times in transaction logs. At time t2 there is a problem which damages the
database, so at time t3 you issue a restore command using the backup image you took at
time t1. This will allow you to get your database back, however, the backup image does
not include the information between time t1 and t2, therefore you need to apply the
transaction logs for this period. Using the roll forward command you can apply the
committed transactions to the restored database, and returned *almost* to the point just
before the crash happened. We discuss each of these concepts in more detail in the next
slides.

 6

6 © 2011 IBM Corporation
05/24/2011 Template Documentation

• Backup and recovery overview

• Database logging

• Backup

• Recovery

Agenda

 7

7 © 2011 IBM Corporation
05/24/2011 Template Documentation

• Logs keep track of changes made to database objects
and their data.

• They are used for recovery: If there is a crash, logs are
used to playback/redo committed transactions, and undo
uncommitted ones.

• Can be stored in files or raw devices

• Logging is always ON for regular tables in DB2

• It's possible to mark some tables or columns as NOT LOGGED

• It's possible to declare and use USER temporary tables which may
not be logged

Database logging

If you were working with a text editor, every time you want to ensure your document is
saved, you click the save button. In the database world, a COMMIT statement does just
that. Every time a COMMIT statement is executed, you guarantee that whatever changes
were made to the data, they will be saved somewhere.

In a similar way, when you work with a text document, sometimes you will see at the
bottom right corner a brief message saying “auto-saving”. In the database world, this
happens as well, because any operation you perform against the data, such as an
UPDATE, INSERT or DELETE, will be saved somewhere as you perform it.

That “somewhere” in the preceding paragraphs refers to the database logs. The database
logs are stored on disk and are used to record actions of transactions. If there is a system
or database crash, logs are used to playback and redo committed transactions during a
recovery.

Database transaction logs keep track of all the operations users perform on a database.
For example, the logs will include information about UPDATE statements, including the old
values, and the new values. They will have information about INSERT statements with the
values being inserted; they will have information about COMMIT or ROLLBACKs, etc.

Logging is ON by default in DB2, and it cannot be turned off. There are some objects or
operations that you can choose not to log. For example, you can choose to not log changes
to large objects. You can also choose to not log changes to temporary tables.

 8

8 © 2011 IBM Corporation
05/24/2011 Template Documentation

Database logging

Upon commit, DB2 guarantees data has been written t o logs only

Bufferpool

T1 T2

Tablespace

chngpgs_thresh
softmax

dirty page steal

commit logs

In the figure we see a table space and logs. Both of them reside on disks, although we
recommend that they are not kept on the same disk, because logs are used to recover your
data, so if you put both, your data, and the data to recover your data on the same disk, then
if the disk fails you lose everything.

When an UPDATE operation takes place, the pages for the row(s) in question will be
brought to the buffer pool (memory). The update changes are performed in the buffer pool,
and the old and new values will be stored in the log files, sometimes immediately, and
sometimes when a log buffer is full. If a COMMIT is issued after the UPDATE, the old and
new value will be stored in the log files immediately. This process is repeated for many
other SQL operations that are performed on the database. Only when certain conditions are
met, such as reaching the change page threshold specified in the CHNGPGS_THRES
parameter, are the pages in the buffer pool “externalized” and written to the table space
disk. The CHNGPGS_THRES parameter indicates the percentage of the buffer pool with
“dirty” pages, that is, pages containing changes.

From a performance point of view, it does not make sense to perform two writes for each
COMMIT operation: One to write to the logs, and another one to write to the table space
disk; that’s why “externalization” of the data to the table space disk only occurs when
parameters such as the CHNGPGS_THRES threshold are reached.

 9

9 © 2011 IBM Corporation
05/24/2011 Template Documentation

Types of logs

�Types of logs – based on log file allocation:
● Primary logs are PRE-ALLOCATED
● Secondary logs are ALLOCATED as needed (costly)

● For day to day operations, ensure that you stay within your
primary log allocation

�Types of logs – based on information stored in logs :
● Active logs:

● Information has not been externalized (Not on the
tablespace disk)

● Archive logs
● All information externalized

P1 P2 P3 S1 S2

There are two types of logs based on file allocation:

Primary logs: These are pre-allocated and the number of primary logs available is
determined by the LOGPRIMARY database configuration parameter.

Secondary logs: These are dynamically allocated as needed by DB2. The maximum
number of secondary logs is set by the database configuration parameter LOGSECOND.
Dynamically allocating a log is costly; therefore, for day to day operations, stay within your
primary log allocation. Secondary log files are deleted when all the connections to a
database are terminated.

Types of logs based on information stored in the logs:

Active logs

 Transactions that have not been committed or rolled back

Online archive logs

 Committed and externalized logs in the active log directory

Offline archive logs

 Committed and externalized logs in a separate repository

 10

10 © 2011 IBM Corporation
05/24/2011 Template Documentation

Types of logging

● Circular logging
● For non-production systems
● Logs that become archived, can be overwritten
● What if information externalized to the tablespace was

wrong? (Human error). No logs to redo things!

● Archival logging
● For Production systems
● No logs are deleted.

● Some are stored online (with active logs), others offline in
an external media

There are two types of logging:

Circular logging (for non-production systems), were logs whose information has been committed and externalized
can be overwritten, and archival logging (for production systems) where logs are never overwritten. Each of these
types of logging are described in more detail next.

 11

11 © 2011 IBM Corporation
05/24/2011 Template Documentation

Circular logging

�Default type of logging
�Logs are overwritten when its contents have been externalized, and
there is no need for them for crash recovery

•If a long transaction uses up both, primary and secondary logs, a log
full condition occurs and SQL0964C error message is returned

•Cannot have roll-forward recovery

P1 P2 P3 S1 S2

Circular logging is the default, and is enabled when both of the LOGARCHMETH1 and
LOGARCHMETH2 database configuration parameters are set to OFF. These parameters
indicate the method used to archive the logs, but if you turn them off, that means you do not
want to archive the logs, which is how circular logging works. The figure illustrates circular
logging:

There are 3 primary logs, therefore we can assume that the value of the LOGPRIMARY
parameter is 3. For simplicity, assume there is only one transaction being performed in this
example. As the transaction is performed, the log file P1 starts filling up, and then P2. If a
commit occurs and the information is later externalized to the table space disk, then P1 and
P2 can be overwritten, because the information is no longer needed for crash recovery
(which will be discussed in more detail later). If, on the other hand, the transaction is so long
that it uses P1, P2, P3, and still needs more log space because the transaction has not been
committed nor externalized, then a secondary log (S1 in the figure) is dynamically allocated.
If the transaction continues, more secondary logs are allocated until the maximum
LOGSECOND logs are allocated. If still more logs are needed, an error message indicating a
log full condition is reached will be returned to the user, and the transaction will be rolled
back. Alternatively, you can configure DB2 using the BLK_LOG_DSK_FUL configuration
parameter to continue writing to the logs every 5 minutes while letting some transactions
hang. This gives the DBA some time to find new space, so that the transaction can continue.

Circular logging allows you to recover from crash recovery, but if you want to recover your
data to a given point in time, the closest available time would when you took your last offline
backup.

 12

12 © 2011 IBM Corporation
05/24/2011 Template Documentation

Archival logging
■ Enable with LOGARCHMETH1 db cfg parameter

■ As soon as enabled, you are asked to take an offline backup

■ Log files are NOT deleted – Kept online or offline

■ Roll forward recovery and online backup are possible

Archive Log Directory

OFFLINE ARCHIVE -
Archive logs moved from
ACTIVE log subdirectory.
(May also be on other
 media)

Active Log Directory

ACTIVE – Contains information
for non-committed or non
externalized transactions.

ONLINE ARCHIVE
Contains information for

committed and externalized
transactions.

Stored in the ACTIVE
log subdirectory.

In archive logging, also known as log retain logging, the log files are not overwritten, but are
kept, either online or offline. Online archive logs remain with the active logs which are still
needed for crash recovery. Offline archive logs are moved to another media such as tape,
and this can be done with USEREXIT routines, Tivoli Storage Manager, or other third party
archival products.

To enable archive logging set the database configuration parameters LOGARCHMETH1 or
LOGARCHMETH2 (or both) to a value other than OFF. Another way to enable it is to set the
LOGRETAIN configuration parameter to RECOVERY. This will automatically cause
LOGARCHMETH1 to be set to LOGRETAIN. However, the LOGRETAIN parameter is
deprecated and has been left mainly for compatibility with older versions of DB2.

Archive logging is normally used in production systems; because the logs are kept, this
allows for database recovery back to point in time as early as the oldest log file. With
archive logging, a DBA can recover from errors caused by humans. For example, if a user
of a system inadvertently starts performing an incorrect transaction that lasts for days, then
when the problem is detected, the DBA can restore the system back to the time before the
problem was introduced. However, there may be some manual manipulation required for
the transaction to rerun correctly.

Archive logging is required for roll forward recovery and on-line backup. The figure depicts
the archive logging process.

 13

13 © 2011 IBM Corporation
05/24/2011 Template Documentation

Infinite logging

■ Provides infinite active log space
–Enabled by turning on archival logging and setting LOGSECOND

to -1

■ LOGSECOND indicates how many secondary log files ca n
be allocated. If set to -1, infinite logging allowe d

■ Not good for performance
– Secondary logs are constantly allocated

– Not good for rollback and crash recovery

Infinite logging is possible if you set LOGSECOND to a value of -1; however, this
is not recommended as you may run out of file system space, and it's not good for
performance in case of crash.

 14

14 © 2011 IBM Corporation
05/24/2011 Template Documentation

Database logging configuration from Data Studio

To set up and configure logging in Data Studio, simply right-click on the database name,
and choose “Setup and Configure -> Configure Database Logging”

 15

15 © 2011 IBM Corporation
05/24/2011 Template Documentation

• Backup and recovery overview

• Database logging

• Backup

• Recovery

Agenda

 16

16 © 2011 IBM Corporation
05/24/2011 Template Documentation

Database backups

■ Copy of a database or table space
–User data, DB2 catalog, all control files (e.g. buffer pool files,

table space file, database configuration file)

■ Backup modes:

–Offline Backup
• Does not allow other applications or processes to access the

database
• Only option when using circular logging

–Online Backup
• Allows other applications or processes to access the database

while the backup is happening

The DB2 backup command allows you to take a snapshot copy of your database at the time
the command is executed.

Most commands and utilities can be performed online or offline.

Online implies that other users may be connected and performing operations on the
database while you execute your command.

Offline means that no other users are connected to the database while you perform your
operation. To allow for an online operation, add the keyword ONLINE to the command
syntax, otherwise, by default the command will be assuming you are executing it offline.

 17

17 © 2011 IBM Corporation
05/24/2011 Template Documentation

Database backups – Syntax and examples

� Offline backup example

� Online backup example

BACKUP DATABASE <dbname>
[ONLINE] [TO <path>]

backup database sample to C:\backups

backup database sample online to C:\backups

As mentioned earlier, add the keyword ONLINE to the command syntax to make the
backup an online operation, otherwise, by default the command will be assuming you are
executing it offline.

If you take an ONLINE backup, this means that while users are making changes to the db,
you are taking this backup. So the backup image may not contain all the info to the last
minute. Therefore it may be good to use the clause “INCLUDE LOGS” to ensure the logs
used at the time of the online backup are included with the backup image, this way you
have everything should you have to restore from this image.

 18

18 © 2011 IBM Corporation
05/24/2011 Template Documentation

Database backups – File naming convention

Alias Instance Catalog Node MinuteYear

Type Node Month

Day

Hour Second

Sequence

Backup Type:
0 = Full Backup
3 = Tablespace Backup

SAMPLE.0.DB2INST1.NODE0000.CATN0000.20110314131259.001

In this slide we have an example of the file name generated for a database backup image.
In other words, after you execute the backup command, this is the filename of the file
created.

Note that a backup can be performed for the entire database, or just for tablespaces. In the
naming convention of backup images, the “type” identifies if this is a database or tablespace
backup. If the value is zero, it’s a (full) database backup,if the value is 3 it’s a table space
backup.

The “Node” is fixed at NODE0000, and the “Catalog node” is fixed at CATN0000. Only
when using DPF (Data Partitioning Feature) will these values change.

The timestamp from the “year” to the “seconds” item are important to remember when you
want to restore from a backup copy image as they uniquely identify the backup copy.

 19

19 © 2011 IBM Corporation
05/24/2011 Template Documentation

Incremental backups

Delta Backups Full

Full Full

Full

Cumulative/Incremental Backups

Sunday SundayMon Tue Wed Thu Fri Sat

■ Suitable for large databases; considerable savings by only
backing up incremental/delta changes.

Let’s now talk about “Incremental backups”. Incremental backups can be of two types:
Incremental (a.k.a. cumulative) - Backup of all database data that has changed since the
most recent successful full backup operation

Delta (a.k.a Incremental Delta) - Backup of all database data that has changed since the
last successful backup, whether it was a full, incremental, or delta backup operation.

In the figure at the top, you take a full backup on Sunday, then on Monday you take a
cumulative backup which will include all changes from Sunday to Monday. Then on
Tuesday, you take another cumulative backup. This backup image will include all the
changes from Sunday to Tuesday (it’s cumulative, so it will also include the changes from
Sunday to Monday), and so on. In this example, if there was a crash prior to taking a
cumulative backup on Friday, then to restore to the closest point in time, you would have to
restore from the full backup first taken on Sunday, and then on top restore the cumulative
backup taken on Thursday.

At the bottom of the figure or delta backups: Say you take a full back on Sunday. Then on
Monday you take a delta backup with changes from Sunday to Monday. Then on Tuesday,
you take another delta backup, which will store the changes only from Monday to Tuesday,
and so on, and so on. So in this example, if there was a crash prior to taking the delta
backup on Friday, then to restore to the closest point in time, you would have to restore
from the full backup first taken on Sunday, and then on top restore each of the delta
backups taken on Monday, Tuesday, Wednesday and Thursday.

Fortunately DB2 keeps a history of the different types of backups you have taken and can
intelligently determine which images should be used to restore your database. For
incremental backup to work, you need to have the TRACKMOD database configuration
parameter set to ON.

 20

20 © 2011 IBM Corporation
05/24/2011 Template Documentation

Database backups from Data Studio

From Data Studio, it’s easy to perform a backup. Simply right-click on the database
name, choose Back Up and Restore, and then “Back up”

 21

21 © 2011 IBM Corporation
05/24/2011 Template Documentation

• Backup and recovery overview

• Database logging

• Backup

• Recovery

Agenda

 22

22 © 2011 IBM Corporation
05/24/2011 Template Documentation

Database recovery

� A database recovery will recreate a database or
tablespace from backups and logs

� Use the restore and rollforward commands

A database recovery implies restoring your database from a backup and/or logs. If you just
restore from a backup, you would be recreating the database as it existed at the time the
backup was taken.

If archive logging was enabled before the backup, you can not only restore using a backup
image, but also from the logs. As we will see in the next section, a roll-forward recovery
allows you to restore from a backup, and then apply (roll-forward) the logs to the end of the
logs, or to a specific point in time.

Note that the term “recovery” is used often in this section, but the command used for
recovery is called RESTORE.

 23

23 © 2011 IBM Corporation
05/24/2011 Template Documentation

Types of database recovery

� Crash recovery
● Protects the database from being left inconsistent (power failure)

� Version recovery
● Restores the database from a backup.
● The database will return to the state as saved in the backup
● Any changes made after the backup will be lost

� Rollforward recovery
● Needs archival logging to be enabled
● Goes through the logs to reapply changes on top of the backup.
● It is possible to roll forward either to the end of the logs or to a

specific point in time.
● Minimal data loss

Crash or restart recovery

Assume you are working on a desktop computer running important transactions to a DB2
database. Suddenly there is a power outage, or someone accidentally unplugs the power
cord: what will happen to the database?

The next time you start your computer, and start DB2, crash recovery will automatically be
executed. In crash recovery, DB2 will automatically run the command RESTART
DATABASE and will read and redo/undo the transactions based on the active logs. When
this command completes, you are guaranteed that your database will be in a consistent
state, that is, whatever was committed will be saved, and whatever was not committed will
be rolled back.

Version or image recovery

This type of recovery implies that you are restoring only from a backup image; therefore,
your database would be put in the state it was at the time the backup was taken. Any
transactions performed on the database after the backup was taken would be lost.

Roll-forward recovery

With this type of recovery, you not only RESTORE from a backup image, but you also run
the ROLLFORWARD command to apply the logs on top of the backup so that you can
recover to a specified point in time. This type of recovery minimizes data loss.

 24

24 © 2011 IBM Corporation
05/24/2011 Template Documentation

Database recovery – Restore command syntax

� Offline restore example

RESTORE DATABASE <dbname>
 [ONLINE][FROM <path>]
 [TAKEN AT <timestamp>]
 [WITHOUT PROMPTING]

restore database sample
 from C:\backups
 taken at 20110718131210

SAMPLE.0.DB2INST.NODE0000.CATN0000.20110718131210.001

This is the syntax of the RESTORE command.

Use the RESTORE command to recover a database from a backup image. In the syntax,
“Online” is needed to perform this operation online, which means users are connected to
the database. Online restore would only apply to a table space restore.

“Taken At” is where you specify the timestamp that you get from the backup copy image.

“Without prompting” is used so there are no prompts during the restore operation. For
example, say you restore over an existing database. The RESTORE command would
prompt you if you want to overwrite the existing database or not. If you use “Without
prompting” the restore command would just go ahead and overwrite it.

At the bottom of the slide there is an example of restoring a database. Note that TAKEN AT
clause is used to specify from which backup image to restore. As seen on the example and
explained earlier, the name of the backup image includes the timestamp when it was taken.

 25

25 © 2011 IBM Corporation
05/24/2011 Template Documentation

Table space backups & restores

■ Enables user to backup a subset of database

■ Can only be used if archival logging is enabled

■ Multiple table spaces can be specified

■ Table space can be restored from either a database backup or
table space backup

■ Use the keyword TABLESPACE to specify table spaces

■ Example: Backing up online a tablespace 'tblsp1'

backup database sample
 tablespace(tblsp1)online to C:\backups

restore database sample
 tablespace(tblsp1)online from C:\backups
 without prompting

This slide shows that both, backup and restore operations can be performed at the table
space level.

Note that when you restore and roll forward a table space, you have to do it to a minimal
point in time (PIT) which ensures your data is consistent. To find out the minimal PIT, use
the command: GET SNAPSHOT FOR TABLESPACES ON <database>

and look for “Minimum Recovery Time” item.

You can also use the “list tablespaces show detail” but an item for minimum point in time
recovery won't appear unless archival logging is enabled.

Multiple table spaces can be specified when backing up/ restoring. Ensure to use the
keyword TABLESPACE followed by the table space names in the command.

Note as well that table spaces can be restored from either a database backup or a table
space backup.

At the bottom of the slide there is an example of backing up a table space, and then
restoring it, both performed online.

 26

26 © 2011 IBM Corporation
05/24/2011 Template Documentation

Also possible with backup and restore...

■ Backup compression

■ Clone a database from a backup image and
change containers (redirected restore)

■ Restore over existing database

■ Recovery of dropped tables

■ etc...

This final slide shows other things that are possible with backups and restores.

Backup images can be compressed which can save space.

Cloning a database can be performed with a backup/restore operations; however if you take
a backup on Linux, it cannot be restored on Windows and viceversa. In some cases within
UNIX, it is possible to backup a database taken on one UNIX, and restore it on another
UNIX. For cases where you need to clone a database from one Windows system to
another one on Linux (or viceversa) you need to use db2look and db2move utilities.

In addition, what happens if you want to backup and restore a database on systems running
the same operating system, but with different disk layout? For example if you take a backup
on a system with 5 disks, and want to restore it on another system that has 3 disks? The
backup image includes information about where the table spaces are stored. If the system
you want to restore to has a different disk layout, you need to run a redirected restore.
Using a redirected restore, you can manually (or using a script) specify the containers for
your table spaces.

You can restore over an existing database, though you will receive a warning message.

Recovery of dropped tables is possible if you turn on this support which would cause more
logging and performance cost.

Note that in addition to restore and roll forward, there is another command called “Recover”
which performs a “Restore” plus a “Roll forward” in one single command.

 27

27 © 2011 IBM Corporation
05/24/2011 Template Documentation

Thank you!

Use the forum in the db2university.com course AA001EN if you have technical questions
about the materials covered in this course. Fellow students, faculty and IBMers can help
you!

