

 1

1 © 2011 IBM Corporation

DB2 pureXML
IBM Information Management Cloud Computing Center of Competence
IBM Canada Lab

 2

2 © 2011 IBM Corporation
05/30/2011 Template Documentation

Agenda
• Overview

• Inserting XML data

• XPath

• XQuery

• Querying XML data using SQL/XML

• Querying XML data using XQuery

• Update & Delete operations with XML

• XML Indexes

• XML Schema Validation

• Other XML support

 3

3 © 2011 IBM Corporation
05/30/2011 Template Documentation

• Reading materials

• Getting started with DB2 Express-C eBook
• Chapter 15: DB2 pureXML

• Getting started with IBM Data Studio for DB2 eBook
• Chapter 4: Creating SQL and XQuery scripts

• Videos

• db2university.com course AA001EN
• Lesson 11: DB2 pureXML

Supporting reading material & videos

 4

4 © 2011 IBM Corporation
05/30/2011 Template Documentation

Agenda

• Overview

• Inserting XML data

• XPath

• XQuery

• Querying XML data using SQL/XML

• Querying XML data using XQuery

• Update & Delete operations with XML

• XML Indexes

• XML Schema Validation

• Other XML support

 5

5 © 2011 IBM Corporation
05/30/2011 Template Documentation

What is XML?

■ eXtensible Markup Language
–XML is a language designed

to describe data

■ A hierarchical data model

<book>
<authors>

<author id=" 47">John Doe</author>
<author id=" 58">Peter Pan</author>

</authors>
<title> Database systems</title>

</book>

Flexible Describes
itself

Easy to
share

Easy to
extend

Platform
Independent

Vendor
Independent

Characteristics of XML

XML stands for eXtensible Markup Language. XML’s popularity and use has grown
exponentially in the past few years. Why is XML important?

- XML is the foundation of web services , and web services are the foundation of
information on demand. Information On Demand , as its name implies, is
making information available whenever it is requested. This can be made
possible by providing information as a service.

- XML is also at the core of Web 2.0 technologies.
XML is at the base of these concepts; without it, they would be hard to implement.

XML data uses a hierarchical model , which is most appropriate to store unstructured types
of information.

XML has a set of specific characteristics:
- Flexible : easy to modify or adapt
- Easy to extend : you can create your own tags
- Describes itself : XML Schema (which itself is an XML document) provides rules

and description to tags used in a document
- Can be transformed to other formats : e.g. to HTML, XSLT
- Independent of the platform or vendo r
- Easy to share : easy to share with other applications since it can be stored as a text

document

 6

6 © 2011 IBM Corporation
05/30/2011 Template Documentation

Banking
IFX, OFX, SWIFT, SPARCS,

MISMO +++

Financial Markets
FIX Protocol, FIXML, MDDL,

RIXML, FpML +++

Insurance
ACORD

XML for P&C, Life +++

Chemical & Petroleum
Chemical eStandards

CyberSecurity

PDX Standard+++

Healthcare
HL7, DICOM, SNOMED,

LOINC, SCRIPT +++

Life Sciences
MIAME, MAGE,

LSID, HL7, DICOM,

CDIS, LAB, ADaM +++

Retail
IXRetail, UCCNET, EAN-UCC

ePC Network +++

Electronics
PIPs, RNIF, Business Directory,

Open Access Standards +++

Automotive
ebXML,

other B2B Stds.

Telecommunications
eTOM, NGOSS, etc.

Parlay Specification +++

Energy & Utilities
IEC Working Group 14

Multiple Standards

CIM, MultispeakCross Industry
PDES/STEPml

SMPI Standards

RFID, DOD XML+++

Who uses XML?

XML is used by many different industries, such as banking, healthcare, etc.

 7

7 © 2011 IBM Corporation
05/30/2011 Template Documentation

XML document: Serialized representation

XML is a language designed to describe data. It is comprised of nodes such as elements and
attributes.

Its components are:
- element
- root element
- attribute
- text nodes

In this example:
- root element: <book>
- element: <authors>, <author>, <title>, <price>, <keywords>, <keyword.
- attribute: id=”47”, id=”58”
- text nodes: John Doe, Peter Pan, Database systems, 29, SQL, relational

 8

8 © 2011 IBM Corporation
05/30/2011 Template Documentation

XML document: Parsed-hierarchical representation

book

authors keywords

id=47 id=58

author

SQL relationalPeter PanJohn Doe

29Database
systems

title price

author keyword keyword

Document Node

This is just another example showing the different types of nodes that an XML can have:
- root
- element
- attribute
- text

 9

9 © 2011 IBM Corporation
05/30/2011 Template Documentation

Well-formed vs. valid XML documents

■ A well-formed XML document is a document that follows
basic rules:
1) It must have one and only one root element
2) Each element begins with a start tag and ends with an end tag
3) An element can contain other elements, attributes, or text nodes
4) Attribute values must be enclosed in double quotes. Text nodes,

on the other hand, should not.

■ A valid XML document is BOTH:
1) A well-formed XML document
2) A document compliant with the rules defined in an XML schema

document or a Document Type Definition (DTD) document.

There are two concepts that people often get confused with regarding XML documents.
- well-formed XML documents
- valid XML documents

A well-formed XML document is a document that follows these basic rules.
- It must have one and only one root element.
- Each element begins with a start tag and ends with an end tag.
- An element can contain other elements, attributes, or text nodes.
- Attribute values must be enclosed in double quotes. Text nodes, on the other hand,

should not.
e.g.:
- missing ending tag:

<employee>
 <name>John
</employee>

- no root node
<department></department>
<name>John</name>

A valid XML document is
- A well-formed XML document.
- A document compliant with the rules defined in an XML schema document or a

Document Type Definition (DTD) document.

 10

© 2011 IBM Corporation10 IBM ConfidentialMay 30, 2011

Relational
Engine

SQL

pureXML overview

First we show a very simple overview of a relational management system on the left,
where you issue SQL that is processed by a relational engine which access the data
stored in tables.

 11

© 2011 IBM Corporation11 IBM ConfidentialMay 30, 2011

Relational
Engine

<employee id=“9”>
 <name>John </name>
 <phone> 555 1212</phone>
</employee>

SQL

pureXML overview

Now, because of Web 2.0 and SOA we have an exponential growth in the usage of XML.

How is XML stored in many database products?

 12

© 2011 IBM Corporation12 IBM ConfidentialMay 30, 2011

Relational
Engine

<employee id=“9”>
 <name>John </name>
 <phone> 555 1212</phone>
</employee>

SQL
id name phone

9 John 5551212

pureXML overview

Well, they are mapping the XML document to table format (so converting it from
hierarchical to relational format).

 13

© 2011 IBM Corporation13 IBM ConfidentialMay 30, 2011

Relational
Engine

XQuery
<employee id=“9”>
 <name>John </name>
 <phone> 555 1212</phone>
</employee>

SQL
id name phone

9 John 5551212

pureXML overview

Next, when you issue an XQuery,

 14

© 2011 IBM Corporation14 IBM ConfidentialMay 30, 2011

Relational
Engine

XQuery
<employee id=“9”>
 <name>John </name>
 <phone> 555 1212</phone>
</employee>

SQL
id name phone

9 John 5551212

pureXML overview

since Xquery cannot be understood by the relational engine, it has to be mapped to SQL
first, behind the scenes.

 15

© 2011 IBM Corporation15 IBM ConfidentialMay 30, 2011

Relational
Engine

<employee id=“9”>
 <name>John </name>
 <phone> 555 1212</phone>
</employee>

SQL

pureXML overview

With DB2 pureXML technology, we don't do this.

 16

© 2011 IBM Corporation16 IBM ConfidentialMay 30, 2011

Relational
Engine

<employee id=“9”>
 <name>John </name>
 <phone> 555 1212</phone>
</employee>

SQL

 XML
Engine

pureXML overview

PureXML has two main characteristics:

1) DB2 has a second part for its engine that understands native XML

This means it can understand Xquery, so there's also no need to map to SQL

 17

© 2011 IBM Corporation17 IBM ConfidentialMay 30, 2011

Relational
Engine

<employee id=“9”>
 <name>John </name>
 <phone> 555 1212</phone>
</employee>

SQL

name

employee

phoneid=9

John 555-1212

 XML
Engine

pureXML overview

2) XML is stored in parsed-hierarchical format in the database.

So there is no mapping required. There is no conversion from hierarchical to relational.
The XML is stored as a tree which is hierarchical in nature.

 18

© 2011 IBM Corporation18 IBM ConfidentialMay 30, 2011

Relational
Engine

XQuery
<employee id=“9”>
 <name>John </name>
 <phone> 555 1212</phone>
</employee>

SQL

name

employee

phoneid=9

John 555-1212

 XML
Engine

pureXML overview

So now, if we issue a Xquery statement,

.

 19

© 2011 IBM Corporation19 IBM ConfidentialMay 30, 2011

Relational
Engine

XQuery
<employee id=“9”>
 <name>John </name>
 <phone> 555 1212</phone>
</employee>

SQL

name

employee

phoneid=9

John 555-1212

 XML
Engine

pureXML overview

It can be understood by the XML part of the engine without any mapping required.

In summary, the storage format = the processing format

Therefore, performance will better, there will be less code, and easier maintenance.

Note as well that the two parts of the engine (relational and XML) can talk between each
other, so I can combine SQL with Xquery as we will see next.

 20

20 © 2011 IBM Corporation
05/30/2011 Template Documentation

Integration of XML and relational data

geneX = 987

geneX = 987

geneX = 123

NAME SEX AGE COFFEE SMOKE DNA

Elizabeth F 65 35 15

Raul M 47 10 0

…

Tina F 58 4 10

PATIENTS table

Integrating relational and XML data in the same query can also lead to useful information.
For example, let's say I am a medical researcher and I’m trying to find the cure of cancer.
Let's say I've been doing this for the past 25 years where I've been storing information
about my patients in a table, where I have relational data like the name of the patient, the
sex of the patient, the age, how many years this patient has been drinking coffee, how
many years this patient has been smoking, and I’m also storing the DNA of each patient on
the last column. And I’m storing DNA information as an XML document because XML is
good to store unstructured or semi-structured type of information like DNA. I am
representing the XML document as a tree because an XML document is hierarchical and a
tree is hierarchical in nature. Now let's assume that all cancer patients or most of my
cancer patients have a gene X with a value of 987.

So with DB2 I can integrate relational data like coffee and smoking, which are some factors
that may or may not cause cancer, and this gene X with a value of 987, which seems to
appear in most cancer patients. Let's see how we can do this on the next slide.

 21

21 © 2011 IBM Corporation
05/30/2011 Template Documentation

SQL with XQuery/XPath

SELECT name from PATIENTS
WHERE
xmlexists ('$p/Patient/MedicalDetail[geneX="987"]'
 passing PATIENTS.DNA as "p")
and sex = 'F'
and age > 55
and coffee > 15
and smoke > 10
;

Running this query we can perform this integration.

The first two lines and the last four lines are just SQL as usual where I’m selecting the
name from the patient's table and I’m doing some filtering based on the sex, the age,
coffee, and smoking. The third and the fourth line is what are new with DB2. First, we call
the XMLEXISTS function which is part of the SQL/XML standard. This function allows me
to perform some test to see if a condition is satisfied in the XML document, and I use this
as another filter for my query.

The $p is a variable (anything with '$' means it's a variable), and this variable is defined in
the 4th line, where I'm assigning PATIENTS.DNA to 'p'. PATIENTS.DNA is the XML
column, so I'm basically passing to 'p' the XML document. Then going back to line 3, in
$p/Patient/MedicalDetail... I'm using Xpath to traverse the XML document until I test if
geneX = '987'.

So I am combining SQL with XPATH or XQUERY, or mixing the relational model with the
hierarchal model of XML.

The end results is that I may be able to find some correlation between several factors like
drinking coffee or smoking with the appearance of this gene, and this type of queries may
help find the cure of cancer.

 22

22 © 2011 IBM Corporation
05/30/2011 Template Documentation

Native XML storage
■ Documents are stored in parsed representation

 <customerInfo>
 <customer id ="1">
 <name>Victor </name>
 <sex>M</sex>
 <phone type="work">739-1274</phone>
 </customer>
 <customer id ="2">
 <name>April </name>
 <sex>F</sex>
 <phone type="home">983-2179</phone>
 </customer>
 </customerInfo>

customerInfo

customer customer

Id=”1” Id=”2”name sex phone name sex phone

type =
“work ”

739-1274 type =
“home ”

983-2179MVictor FApril

Serialization

XML ParsingDocument
Object
Model

When the XML document is inserted into the database, DB2 parses the XML document
and stores it internally as a parsed tree using the XQuery Data Model (XDM). This tree is
persistent.

If you want to do the opposite process (going from a parsed-tree format to a serialized
format), this is called serialization

 23

23 © 2011 IBM Corporation
05/30/2011 Template Documentation

Native XML storage

� XML stored in parsed hierarchical format

create table dept (deptID char(8),…, deptdoc xml);

� Relational columns
are stored in relational
format (tables)

� XML columns are
stored natively

� XML stored in UTF8

To store XML documents, you create a table as usual, but for XML documents, you need to
create a column defined with the XML data type. So in the example, there is a table “dept”
which has a relational column “deptID” defined as char(8); and then we have a column
“deptdoc” defined as XML.

 24

24 © 2011 IBM Corporation
05/30/2011 Template Documentation

Agenda

• Overview

• Inserting XML data

• XPath

• XQuery

• Querying XML data using SQL/XML

• Querying XML data using XQuery

• Update & Delete operations with XML

• XML Indexes

• XML Schema Validation

• Other XML support

 25

25 © 2011 IBM Corporation
05/30/2011 Template Documentation

Table definitions with XML columns
create table items (

 id int primary key not null,

 brandname varchar(30),

 itemname varchar(30),

 sku int,

 srp decimal(7,2),

 comments xml

);

create table clients(

 id int primary key not null,

 name varchar(50),

 status varchar(10),

 contact xml

);

Let’s say we have these two tables that we are going to create, the items table and the
clients table, where the last column is defined with the XML data type for both tables. XML
columns do NOT need to be defined on the last column of a table, we just put them there in
this particular example.

 26

26 © 2011 IBM Corporation
05/30/2011 Template Documentation

XML documents to load to tables “client” and “item”
■ Assume these files are in C:\DB2workshop

This figure shows several files under the directory “C:\DB2workshop”.

The file “CLIENT. DEL” is a Delimited ASCII file which has data separated by commas (the
delimiter). If we pick the first row in this file, and the last column in that row, we see
something like “<XDS FIL='Client3227.xml'>. This is a pointer to an XML file, and the
contents of this file are also shown in the figure.

Similarly there is an items.del file, and corresponding XML files.

Basically we are explaining in this figure what we plan to insert into the tables we created
earlier.

 27

27 © 2011 IBM Corporation
05/30/2011 Template Documentation

Inserting XML documents

INSERT INTO clients VALUES (77, 'John Smith', 'Gold ',
 ' <addr>111 Main St., Dallas, TX, 00112</addr>') ;

� 1st method: A simple SQL INSERT

�Can be implicitly or explicitly

� Implicit XML parsing: XML document entered as a str ing

� Explicit XML parsing with the XMLPARSE function

�Tell system how to treat whitespaces (strip/preserve)

� Default is 'Strip WHITESPACE'

INSERT INTO clients VALUES (77, 'John Smith', 'Gold ',
xmlparse (document '<addr>111 Main St., Dallas, TX,
00112</addr>' preserve whitespace));

There are two methods to insert an XML document in a table:

1) Use a simple SQL INSERT.

You can do this implicitly or explicitly.

Implicitly means that you simply pass the XML document as a string, and because it is
being inserted into an XML column, DB2 will know if has to parse it.

Explicitly means you must tell DB2 with the XMLPARSE function to parse the XML
document. You can also indicate how to treat white spaces.

 28

28 © 2011 IBM Corporation
05/30/2011 Template Documentation

Inserting XML documents

IMPORT from "C:\DB2workshop \ clients.del " of del

 xml from "C:\DB2workshop" INSERT INTO

 CLIENTS (ID, NAME, STATUS, CONTACT);

IMPORT from "C:\DB2workshop \ items.del " of del

 xml from "C:\DB2workshop" INSERT INTO

 ITEMS (ID, BRANDNAME, ITEMNAME, SKU, SRP,COMMENT S);

� 2nd method: Use the DB2 IMPORT utility

The second method is to use the IMPORT utility. Going back two slides we showed the
contents of the C:\DB2workshop directory. Now the files in that directory are used in the
IMPORT command.

 29

29 © 2011 IBM Corporation
05/30/2011 Template Documentation

Agenda

• Overview

• Inserting XML data

• XPath

• XQuery

• Querying XML data using SQL/XML

• Querying XML data using XQuery

• Update & Delete operations with XML

• XML Indexes

• XML Schema Validation

• Other XML support

 30

30 © 2011 IBM Corporation
05/30/2011 Template Documentation

XPath

Each node has a path

dept

name

employee

phoneid=901

John Doe

office

408-555-1212 344

name

employee

phoneid=902

Peter Pan

office

408-555-9918 216

■ XML Query Language
■ Subset of XQuery & SQL/XML

<dept bldg=“ 101”>
 <employee id=“ 901”>
 <name>John Doe </name>

<phone> 408 555 1212</phone>

<office> 344</office>

</employee>

<employee id=“ 902”>

<name>Peter Pan </name>

<phone> 408 555 9918</phone>

<office> 216</office>

</employee>
</dept>(...)

/dept/employee/office
/dept/employee/phone
/dept/employee/name
/dept/employee/@id
/dept/employee
/dept
/

XPath is a language that you can use to navigate an XML document. It is not something
proprietary of IBM, but it’s a standard. It’s basically a query language. What we have here
on the right an XML document in serialized representation.

Below is the same document represented as a tree, also known as a parsed hierarchical
representation. So these two representations are exactly the same thing, and in this case,
you can think of the parsed-hierarchical representation as the way that DB2 stores the XML
document inside the database, in a persistent way.

Some XPath expressions are shown at the top left corner. XPath is fairly easy to learn; it is
very similar to the cd (change directory) command that you used in MS-DOS, Windows,
Linux, Unix,. For example, you go:

CD /directory/subdirectory/subdirectory, so basically you are using the cd
command to navigate a tree, which is hierarchical in nature.

The same thing happens with XPath, you go, for example, /dept/employee/name ; that
means you are going to the dept element first, or the root, then you go to employee, then
you go to name and you will get this information which is John Doe. Now in this case, there
are, as you can see, two employees, so you will get both, you will get all the way to John
Doe and all the way to Peter Pan.

 31

31 © 2011 IBM Corporation
05/30/2011 Template Documentation

XPath: Simple expressions

� Use fully qualified paths to specify
elements/attributes

� “@” is used to specify an attribute

� use “text()” to specify the text node
under an element

XPath Result

/dept/@bldg 101

/dept/employee/@id 901
902

/dept/employee/name <name> John Doe </name>
<name>Peter Pan </name>

/dept/employee/name/text() Peter Pan
John Doe

<dept bldg=“ 101”>
 <employee id=“ 901”>
 <name>John Doe </name>

<phone> 408 555 1212</phone>

<office> 344</office>

</employee>

<employee id=“ 902”>

<name>Peter Pan </name>

<phone> 408 555 9918</phone>

<office> 216</office>

</employee>
</dept>

There are different other things you can do with XPath. There are several XPath
expressions to choose exactly what you want, so we will go through some of them very
quickly.

Assuming that the top right XML document is the one I'm working on, if I do a:

 /dept/@bldg , the @ symbol means that I want the attributes, that’s why it is retrieving 101,
because that’s the attribute 101.

Then for /dept/employee , attribute id, the same thing. In this case the attribute will be 901.
And because there two employees, there is also 902, so that’s why I am getting both
attributes ， 901 and 902.

A /dept/employee/name, is the same example I provided in the previous slide. Note
that what I am getting as well is the tag name, and the ending tag, that is just the way it
works, the tags will be included.

If you don’t want the tags to be included, then you can add the function called text at the
end of the XPath, so that you only get the values, as you can see in the last example

expression.

 32

32 © 2011 IBM Corporation
05/30/2011 Template Documentation

XPath: Wildcards
<dept bldg=“ 101”>
 <employee id=“ 901”>
 <name>John Doe </name>

<phone> 408 555 1212</phone>

<office> 344</office>

</employee>

<employee id=“ 902”>

<name>Peter Pan </name>

<phone> 408 555 9918</phone>

<office> 216</office>

</employee>
</dept>

� * matches any tag name
� // is the “descendent-or-self” wildcard

XPath Result

/dept/employee/*/text() John Doe
408 555 1212
344
Peter Pan
408 555 9918
216

/dept/*/@id 901
902

//name/text() John Doe
Peter Pan

/dept//phone <phone> 408 555 1212</phone>
<phone> 408 555 9918</phone>

On this slide, using the same example XML document as before, if you use:

/dept/employee/*, asterisk is a wildcard and it’s basically any one element. It will go
dept, employee and will get all of these: John Doe, 408, 344, and then the same for the
other employee.

The second row in the example is similar: Go to dept, whatever element, and get the
attribute id, 901 and 902.

For the third row, two slashes means that it’s not just one element, but a number of
elements up to when you reach name. So for example, here is name, any elements above,
I don’t care what they are, any elements. And then get me the text: that’s Peter Pan, John
Doe.

Finally, the last row of examples: /dept//phone, means any elements between dept and
phone.

 33

33 © 2011 IBM Corporation
05/30/2011 Template Documentation

XPath: Predicates <dept bldg=“ 101”>
 <employee id=“ 901”>
 <name>John Doe </name>

<phone> 408 555 1212</phone>

<office> 344</office>

</employee>

<employee id=“ 902”>

<name>Peter Pan </name>

<phone> 408 555 9918</phone>

<office> 216</office>

</employee>
</dept>

� Predicates are enclosed in square
brackets […]

� Can have multiple predicates in one
XPath

� Positional predicates: [n] selects the n-
th child

XPath Result

/dept/employee[@id=“902”]/name <name>Peter Pan </name>

/dept[@bldg=“101”]/employee[office >“300”]/name <name>John Doe </name>

//employee[office=“344” OR office=“216”]/@id 901
902

/dept/employee[2]/@id 902

Using square brackets is analogous to the WHERE clause in SQL. For example, for the
first row, you say /dept/employee, where attribute id is 902, and from there it takes the
name. That’s why it gives Peter Pan.

In the expression in the second row you have two conditions

In the expression i n ther 3rd row, we have two slashes, so whatever elements there are
before employee, then where office equals 344, or office equals 216, and from there take
the attribute id.

The last example in the 4th row has a [2]. This means I want the second employee.. If it was
one, it will be “I want the first employee”

 34

34 © 2011 IBM Corporation
05/30/2011 Template Documentation

XPath: Parent axis <dept bldg=“ 101”>
 <employee id=“ 901”>
 <name>John Doe </name>

<phone> 408 555 1212</phone>

<office> 344</office>

</employee>

<employee id=“ 902”>

<name>Peter Pan </name>

<phone> 408 555 9918</phone>

<office> 216</office>

</employee>
</dept>

� Current context: “.”
� Parent context: “..”

XPath Result

/dept/employee/name[../@id=“902”] <name> Peter Pan </name>

/dept/employee/office[.>“300”] <office> 344</office>

/dept/employee[office > “300”]/office <office> 344</office>

/dept/employee[name=“John Doe”]/../@bldg 101

/dept/employee/name[.=“John Doe”]/../../@bldg 101

This is similar to when you use the change directory command where you can use “.” or “..”
which indicate the current context or the parent context.

 35

35 © 2011 IBM Corporation
05/30/2011 Template Documentation

Agenda

• Overview

• Inserting XML data

• XPath

• XQuery

• Querying XML data using SQL/XML

• Querying XML data using XQuery

• Update & Delete operations with XML

• XML Indexes

• XML Schema Validation

• Other XML support

 36

36 © 2011 IBM Corporation
05/30/2011 Template Documentation

What is XQuery?

XQuery & XPath Data Model

XQuery

Expressions

Functions & Operators
XPath

XML

Schema

� XQuery supports path expressions to navigate XML

� XQuery supports both typed and untyped data

� XQuery lacks null values because XML documents omit missing or
unknown data

� XQuery returns sequences of XML data

XQuery is a superset of XPath. XQuery is used to navigate an XML document. There are
other components shown in this chart the are also part of Xquery. Some of them are
discussed in more detail later on.

Xquery returns a sequence of XML data. In Xquery there are no NULL values. Instead,
blanks are used.

 37

37 © 2011 IBM Corporation
05/30/2011 Template Documentation

XQuery: The FLWOR expression

� FOR: iterates through a sequence, bind variable to item s

� LET: binds a variable to a sequence

� WHERE: eliminates items of the iteration

� ORDER: reorders items of the iteration

� RETURN: constructs query results

Within XQuery, we have something called the FLWOR expression, F-L-W-O-R, and with
that expression you can do more manipulations. FLWOR stands for: For, Let, Where,
Order, Return.

FLWOR is to Xquery what in SQL would be a SELECT-FROM-WHERE ORDER BY
clause.

 38

38 © 2011 IBM Corporation
05/30/2011 Template Documentation

XQuery: The FLWOR expression

xquery

for $d in

 db2-fn:xmlcolumn(‘DEPT.DEPTDOC')/dept

let $emp := $d//employee/name

where $d/@bldg > 95

order by $d/@bldg

return

 <EmpList>

 {$d/@bldg, $emp}

 </EmpList>

<dept bldg=“ 101” >
 <employee id=“ 901” >
 <name>John Doe </name>

<phone> 408 555 1212</phone>

<office> 344</office>

</employee>

<employee id=“ 902” >

<name>Peter Pan </name>

<phone> 408 555 9918</phone>

<office> 216</office>

</employee>
</dept>

Input:

 create table dept

 (deptID char(8),deptdoc xml);

Let's look at this example. At the top right corner I have an XML document we will use as
input. At the top we have the table definition of the dept table with a relational column, and
an XML column where we assume have stored the XML document to be used as input for
the XQuery.

You can also see the FLWOR expression. I have to always prefix this by XQuery, because
if we don’t put XQuery at the beginning, then DB2 will assume by default that we are using
SQL, or that you are going to run an SQL statement.

Let's look at the FLWOR expression: “for $d in, etc”. here, I am getting into variable “d”
the XML document that is provided with the function db2-fn:xmlcolumn;

“let $emp...” , I am assigning a new variable called emp , the value of $d, which was the
entire XML document, //employee/name,

“where $d...”, here are some conditions which are later ordered by

Then what I want to return is Emplist , so what exactly will appear is﹩d@bldg, so it will use
101, and then $emp, whatever name was involved, so John Doe, and Peter Pan as well as
part of this, and close with Emplist.

You can use the FLWOR expression to change the format of your XML document. For
example, you can make it follow the rules or the syntax of RSS or Atom. Then that way you
could create a feed out of this XML.

 39

39 © 2011 IBM Corporation
05/30/2011 Template Documentation

Agenda

• Overview

• Inserting XML data

• XPath

• XQuery

• Querying XML data using SQL/XML

• Querying XML data using XQuery

• Update & Delete operations with XML

• XML Indexes

• XML Schema Validation

• Other XML support

 40

40 © 2011 IBM Corporation
05/30/2011 Template Documentation

Two worlds

SQL/XML
Standards

XQuery
Standard

Plain SQL statements enable you to retrieve full XML documents but you cannot specify
XML-based query predicates, and you cannot retrieve partial XML documents. For
example, if I just had SQL, I would only be able to get the entire XML document:

If you do a “select deptdoc from dept ” where deptdoc is an XML column, you will retrieve
all the XML document in that table, so a simple SQL statement like this can work with XML.
However, what if you only want part of the XML document to be retrieved? Or what if you
want to use part of the XML document as a condition in the WHERE clause? In those
cases you cannot just use SQL, you need other standards:

1. SQL/XML (which an extension to SQL that includes XML functions so it works as a
bridge between the SQL and XML world), or

2. Xquery (A superset of XPath)

 41

41 © 2011 IBM Corporation
05/30/2011 Template Documentation

Two worlds

SQL/XML
Standards

XQuery
Standard

DB2 supports both, SQL/XML and Xquery

 42

42 © 2011 IBM Corporation
05/30/2011 Template Documentation

Two worlds

SQL/XML
Standards

XQuery
Standard

Let's start describing the SQL/XML standard first

 43

43 © 2011 IBM Corporation
05/30/2011 Template Documentation

SQL/XML functions

Function Description
XMLPARSE Parses character/BLOB data, produces XML value

XMLSERIALIZE Converts an XML value into character/BLOB data

XMLVALIDATE Validates XML value against an XML schema and type-
annotates the XML value

XMLEXISTS Determines if an XQuery returns results (i.e. a seq uence
of one or more items)

XMLQUERY Executes an XQuery and returns the result sequence

XMLTABLE Executes an XQuery, returns the result sequence as a
relational table (if possible)

XMLCAST Cast to or from an XML type

In SQL/XML, which is a part of the new SQL 2006 standard, that includes XML functions,
there are different functions that we can use. Here is a list and description of some popular
SQL/XML functions.

XMLPARSE, we talked about XMLPARSE when we were doing that insert;

XMLSERIALIZE is the opposite of XMLPARSE;

XMLVALIDATE for validation of an XML document vs. an XML schema. We will talk a little
more about this at the end of this presentation.

XMLEXISTS, XMLQUERY, XMLTABLE etc., we will show some examples of these
functions in the next few slides.

 44

44 © 2011 IBM Corporation
05/30/2011 Template Documentation

XMLEXISTS function

select name from clients
 where
xmlexists ('$CONTACT/Client/Address[zip="95116"]')

select name from clients
 where
 xmlexists ('$c/Client/Address[zip="95116"]'
 passing CLIENTS.CONTACT as "c")

� Use it on the WHERE clause to filter rows based on an XML
element value

� Syntax 1: Explicitly create a variable to hold the XML document

� Syntax 2: A variable is automatically created with the name of the
XML column

XMLEXISTS function allows me to perform a test based on the XML column, and that way I
can restrict some number of rows, for example, here I say select name from clients, where,
XMLexists, ﹩c, Client, address, zip, 95116, passing CLIENTS.CONTACT as c. So basiclly
the first two lines are just SQL as usual; I want the name from clients.

then the third line uses XMLexists. The ﹩c is a variable. Anything with a ﹩represents a
variable. Where is the variable defined? This variable is defined on the fourth line, the one
that says passing CLIENTS.CONTACT as c.

CONTACT is the column that contains the XML document, and CLIENT is the name of the
table

So now, the variable c has the XML documents. And then the /Client/Address, is
XPath, where square brackets are used like a where clause in SQL, to test that zip is
95116.

Basically the XMLexists function allows me to filter some rows based on an element value,
which in this case is zip.

So I want the all the rows, where in the XML document the zip element is 95116. So that’s
what we are doing with this example.

With DB2 9.5 the syntax has been simplified. In the example below we go select name from
client where XMLexist, and we have ﹩CONTACT . This is a variable that is automatically
created with the same name as the column name that contains the XML.. There is no
need to assign a value to it in the syntax anymore.

 45

45 © 2011 IBM Corporation
05/30/2011 Template Documentation

Case sensitivity - Caution!
� SQL is not case sensitive

� XPath and XQuery are case sensitive!

� DB2 objects (tables/columns) need to be put in uppe r case.

� Example:

select name from clients
 where
xmlexists ('$ CONTACT/Client/Address[zip="95116"]')

select name from clients
 where
xmlexists ('$ contact /Client/Address[zip="95116"]')

 Incorrect:

 Correct:

SQL is not case sensitive, so when you are working with SQL, you don’t care about the
case; however, with XPath and XQuery, you do have to be careful about it. And if you
combine SQL with XQuery/XPath, then the SQL part can still be in any case, but for the
XPath and XQuery part you must take into account the case.

So, for example this select name from clients part could have been written in any case, and
then XMLexists could also be in any case, but for whatever is inside this function, is case
sensitive. For example, Client, if you had put the C in lowercase, then you would have
probably received an incorrect result. There would not be an error because the syntax is
ok, but DB2 would not be able to find this path, and then you get an incorrect result.

Now, why is contact (in lowercase) incorrect, and CONTACT (in uppercase) correct? What
happens is that DB2 objects, that is, tables, columns, etc. have to be put in uppercase.
because when you create an object like a table in DB2, it is normally going to be stored in
uppercase regardless of the case used in the create table statement. Of course you can
use double quotes to force a DB2 table to be created in lowercase, but this is not
recommended in general because it will just add complexity to handling the tables.

This is why every time you invoke the name of a column or a table within the Xpath/XQuery
part of the query, it needs to be in uppercase.

Note : If you work with Data Studio, Data Studio creates objects exactly as how you typed
them. We suggest you use uppercase when creating objects in Data Studio.

Another thing to consider is the use of quotes. Ensure they are straight quotes, and not
curly quotes. Programs such as MS-Word/Powerpoint tend to change straight quotes to
curly quotes automatically, so if you copy/paste a statement from those programs, you may
have problems with the quotes.

 46

46 © 2011 IBM Corporation
05/30/2011 Template Documentation

XMLQUERY function

� Retrieve one or more element values from the XML do cument

select
xmlquery ('$CONTACT/Client/email')
 from clients
 where status = 'Gold'

The XMLQUERY function allows me to retrieve an XML element, like email, as a column.
In the example, the email is treated as a column, but actually it is an element of the XML
document.

And then you say from client where status = ‘Gold’. In this case, I am using a relational
column to filter the rows that I want, and I am getting an XML element back.

In the previous example, going back here, in the previous example, we were totally doing
the opposite, we were using an element zip to do the filtering of the rows, and we were
getting a relational column back.

If you try this query out, when you get the result it will say 3 records are retrieved, but you
will only see one. Ithis happens because the first two are blank. This was mentioned briefly
earlier where it was said that in XML, there is not such thing as a NULL. In XML, you get
blanks.

 47

47 © 2011 IBM Corporation
05/30/2011 Template Documentation

Retrieve XML data using the FLWOR expression

SELECT name,
 xmlquery (' for $e in $CONTACT/Client/email[1]
 return $e')
 FROM clients
 WHERE status = 'Gold'

This is another example that uses XMLQUERY, but inside the function, we are using the
FLWOR expression. We are using For. Any time you see For, it is a FLWOR expression. It
does not have to be complete. You don’t actually need to use FLWOR expression in this
example, you could have just returned the email without the For ﹩e and return ﹩e, but we
are just putting this for illustration purposes, so that you can see that you can put a FLWOR
expression within the XMLQUERY.

 48

48 © 2011 IBM Corporation
05/30/2011 Template Documentation

Retrieving and transforming XML into HTML

SELECT
 xmlquery('for $e in $CONTACT/Client/email[1]/tex t()
 return <p>{$e}</p> ')
FROM clients
WHERE status = 'Gold'

in this example note we have <p> and </p>. This is HTML and $e is going to return XML.
So this example illustrates you can embed/combine HTML and XML together.

 49

49 © 2011 IBM Corporation
05/30/2011 Template Documentation

XMLTABLE: From XML to relational

select t.comment#,i.itemname,t.customerID,Message
 from items i,
 xmltable ('$COMMENTS/Comments/Comment'
 columns Comment# integer path 'CommentID ',

CustomerID integer path 'CustomerID',
Message varchar(100) path 'Message') as t

This function called XMLtable is used when you want to go from XML to relational. So for
example, you have your system that works with the relational model, then your company
bought a software product from another company that works in XML, and now you want the
two systems to talk. Potentially you can convert the XML that comes from the other system
to relational by treating it as a table. So here we are invoking the XMLtable function, and
we are going to go all the way to the Comment element, and then from there we are going
to say the columns that I want to define in this table are Comment#, defined as integer, and
the last element in the path is going to be CommentID.

Comments/Comment/CommentID. Then, for CustomerID, the same thing: integer, path
and then CustomerID. For message, the same thing; although it’s a Message.

And then I give an alias, which is t. So basically we are doing select, etc. from items, and

from t as well, from two tables.

 50

50 © 2011 IBM Corporation
05/30/2011 Template Documentation

XMLELEMENT: From relational to XML

select
 xmlelement (name "item",itemname),
 xmlelement (name "id", id),
 xmlelement (name "brand",brandname),
 xmlelement (name "sku",sku)
from items
where srp < 100

• Some other functions that work with XMLELEMENT are:

XMLNAMESPACES : Specifies a namespace for the element being created
XMLATTRIBUTES : Specifies an attribute for the element
XMLCONCAT : Concatenates elements

Moving on, we have the XMLelement function which is similar to, or basically does the
opposite of the XMLtable. This one goes from relational to XML, so you have all
information in tables and you can convert them into XML document. So XMLelement is one
of these functions that you can use for XML creation.

There are other functions listed as well like XMLNAMESPACES, XMLATTRIBUTES, etc.
that will help build the XML doc.

 51

51 © 2011 IBM Corporation
05/30/2011 Template Documentation

XMLTABLE vs XMLELEMENT

XML

Relational

XMLELEMENT XMLTABLE

This figure summarizes the purpose of the last two functions:

XMLtable can be used to go from XML to relational, while XMLelement is to go from
relational to XML.

 52

52 © 2011 IBM Corporation
05/30/2011 Template Documentation

Agenda

• Overview

• Inserting XML data

• XPath

• XQuery

• Querying XML data using SQL/XML

• Querying XML data using XQuery

• Update & Delete operations with XML

• XML Indexes

• XML Schema Validation

• Other XML support

 53

53 © 2011 IBM Corporation
05/30/2011 Template Documentation

Two worlds

SQL/XML
Standards

XQuery
Standard

Let's now talk about the second part, which is how to query XML data using the XQuery
standard

 54

54 © 2011 IBM Corporation
05/30/2011 Template Documentation

XMLCOLUMN

� xmlcolumn is a function with a parameter that identifies the table name
and column name of an XML column.

� Simple XQuery to return customer contact data:

xquery
db2-fn:xmlcolumn('CLIENTS.CONTACT')

� Adding an additional filtering predicate

xquery
db2-fn:xmlcolumn
 ('CLIENTS.CONTACT')/Client/Address[zip="95116 "]

In XQuery, everything has to be prefixed with the keyword XQuery. As said earlier, if you
don’t put this keyword, DB2 will assume it's SQL.

The XMLCOLUMN function is used to retrieve all the content of the XML column, so this
actually will be equivalent to issuing a select CONTACT from clients if I am just using SQL.

However, in SQL that's all I can do with XML, that it, SQL can let me retrieve the entire
XML document, but not just part of it. With XMLCOLUMN function, you can retrieve part of
the XML document.

 55

55 © 2011 IBM Corporation
05/30/2011 Template Documentation

XMLCOLUMN - More examples

xquery
 for $y in db2-fn:xmlcolumn('CLIENTS.CONTACT')/Cli ent/fax
 return $y

� FLWOR expression with XMLCOLUMN to retrieve client fax data:

<fax>4081112222</fax>
<fax>5559998888</fax>

� Sample output:

xquery
 {
for $y in db2-fn:xmlcolumn('CLIENTS.CONTACT')/Clien t/Address
order by $y/zip
return {$y}

}

� Querying DB2 XML data and returning results as HTML

This is another example using the XMLCOLUMN function inside a FLWOR expression (at
the top)

At the bottom you have another FLWOR expression, and the return is using HTML
() combined with XML

 56

56 © 2011 IBM Corporation
05/30/2011 Template Documentation

XMLCOLUMN - More examples

<address>

<street>9407 Los Gatos Blvd.</street>
<city>Los Gatos</city>
<state>ca</state>
<zip>95302</zip>

</address>

<Address>
 <street>4209 El Camino Real</street>

<city>Mountain View</city>
<state>CA</state>
<zip>95302</zip>

</address>

…

This is the sample output of the previous example

 57

57 © 2011 IBM Corporation
05/30/2011 Template Documentation

SQLQUERY: Embedded SQL with XQuery

� A function which executes a SQL query and returns only the selected
data

� The result set from the query passed to db2-fn:sqlquery must return
XML data

� This XML data can then be further processed by XQuery

xquery
for $y in
db2-fn:sqlquery(' select comments from items where srp > 100')/Comments/Comment
where $y/ResponseRequested='Yes'
return (
<action>
 {$y//ProductID}
 {$y//CustomerID}
 {$y//Message}
</action>
)

SQLQUERY allows you to embed SQL inside XQuery. So before, when working with
SQL/XML you would start with a SELECT and within this SELECT you would invoke
XMLexists, XMLquery etc, so XML functions where embedded in SQL.

Now what I am using is XQuery at the top level and I'm embedding SQL.

This query is selecting comments from items where srp>100, and from there it will maybe
select, let’s say we have 200 rows. The comments column must be an XML column. From
there we go to /Comments/Comment, so I am going down navigating the elements. Of
course these names may not be very good for illustration purposes, but these are different

elements, then from there I continue with the XQuery.

 58

58 © 2011 IBM Corporation
05/30/2011 Template Documentation

Agenda

• Overview

• Inserting XML data

• XPath

• XQuery

• Querying XML data using SQL/XML

• Querying XML data using XQuery

• Update & Delete operations with XML

• XML Indexes

• XML Schema Validation

• Other XML support

 59

59 © 2011 IBM Corporation
05/30/2011 Template Documentation

DELETE operations with XML

� Deletes a row based on a condition that uses an XML element

� Use a SQL DELETE statement

� A DELETE first searches for the document, and then deletes it.
The search part can be done using the same SQL/XML functions
as when querying data

delete from clients
 where
 xmlexists ('$c/Client/Address[zip="95116"]'
 passing CLIENTS.CONTACT as "c")

� To delete XML data, see the SQL UPDATE statement ne xt

To delete XML data, you can simply use SQL and use an update statement where the XML
column is set to NULL..

If you want to delete rows of a table based on a condition found in the XML documents, you
can use the SQL/XML functions discussed earlier. An example of this case is shown
above.

If you want to delete part of the XML document, what you are actually doing is “updating”
the XML document, and this is covered in the “Update” section using the TRANSFORM
expression.

 60

60 © 2011 IBM Corporation
05/30/2011 Template Documentation

UPDATE operations with XML

� Use the TRANSFORM
expression

� Let’s say you
have this XML
document (From
SAMPLE
database,
purchaseorder
table)

This is an example to show how UPDATE operations work in XML. Here you can see there
are three item elements in this XML document.

 61

61 © 2011 IBM Corporation
05/30/2011 Template Documentation

UPDATE example

� Adding an element to the end of the document

UPDATE purchaseorder SET porder =
 xmlquery(' transform
 copy $po := $order
 modify do insert
 document { <item>
 <partid>100-103-01</partid>
 <name>Snow Shovel, Super Deluxe 26 i nch</name>
 <quantity>4</quantity>
 <price>49.99</price>
 </item>
 }
 into $po/PurchaseOrder
 return $po'
 passing purchaseorder.porder as "order")
WHERE poid=5012;

Using this example, we are updating the XML document to add one more item.

 62

62 © 2011 IBM Corporation
05/30/2011 Template Documentation

UPDATE example

� After adding the
element to the end:

This figure now shows 4 items after executing the update, where the last item added has
been expanded, while the other are collapsed.

 63

63 © 2011 IBM Corporation
05/30/2011 Template Documentation

UPDATE example

� Deleting an XML element when updating

� For example, deleting element with partid: 100-201- 01

UPDATE purchaseorder SET porder =
 xmlquery(' transform
 copy $po := $order
 modify do delete
 $po/PurchaseOrder/item[partid = ''100- 201-01'']
 return $po'
 passing porder as "order")
WHERE poid=5012;

This is another example, but in this case we are deleting an element in the XML document.

 64

64 © 2011 IBM Corporation
05/30/2011 Template Documentation

UPDATE example

� After deleting element
with partid:

 100-201-01

This show the element was deleted.

 65

65 © 2011 IBM Corporation
05/30/2011 Template Documentation

UPDATE operations with XML

� Many other things you can do with TRANSFORM:
�Replace the value of an element

�Replace the value of an attribute

�Replace an element and attribute

�Rename an element and attribute

�etc.

� Examples were taken from:

C:\Program Files\IBM\SQLLIB\samples\xml\xquery\clp\xupdate.db2

 66

66 © 2011 IBM Corporation
05/30/2011 Template Documentation

Agenda

• Overview

• Inserting XML data

• XPath

• XQuery

• Querying XML data using SQL/XML

• Querying XML data using XQuery

• Update & Delete operations with XML

• XML Indexes

• XML Schema Validation

• Other XML support

 67

67 © 2011 IBM Corporation
05/30/2011 Template Documentation

XML Indexes
create table customer (info XML);

<customerinfo Cid="1004">
 <name>Matt Foreman </name>
 <addr country=" Canada">
 <street> 1596 Baseline </street>
 <city> Toronto </city>
 <state> Ontario </state>
 <pcode> M3Z-5H9</pcode>
 </addr>
 <phone type="work"> 905-555-4789</phone>
 <phone type="home"> 416-555-3376</phone>
 <assistant>
 <name>Peter Smith </name>
 <phone type="home"> 416-555-3426</phone>
 </assistant>
</customerinfo>

create unique index idx1 on customer

 (info) generate key using

 xmlpattern ' /customerinfo/@Cid '

 as sql double;

You can define XML indexes based on a Xpath expression.

For example, if you access the Cid attribute constantly, then you can create an XML index
just to that particular attribute. You will do it using this syntax: create unique index, etc.,
generate key using XMLpattern, and then you put an Xpath statement to go to that attribute.

The other examples are similar where the Xpath is what changes.

 68

68 © 2011 IBM Corporation
05/30/2011 Template Documentation

XML Indexes
create table customer (info XML);

<customerinfo Cid=" 1004">
 <name>Matt Foreman</name>
 <addr country=" Canada">
 <street> 1596 Baseline </street>
 <city> Toronto </city>
 <state> Ontario </state>
 <pcode> M3Z-5H9</pcode>
 </addr>
 <phone type="work"> 905-555-4789</phone>
 <phone type="home"> 416-555-3376</phone>
 <assistant>
 <name>Peter Smith </name>
 <phone type="home"> 416-555-3426</phone>
 </assistant>
</customerinfo>

create index idx2 on customer (info)

 generate key using

 xmlpattern ' /customerinfo/name[1] '

 as sql varchar(40);

 69

69 © 2011 IBM Corporation
05/30/2011 Template Documentation

XML Indexes
create table customer (info XML);

<customerinfo Cid=" 1004">
 <name>Matt Foreman</name>
 <addr country=" Canada">
 <street> 1596 Baseline </street>
 <city> Toronto </city>
 <state> Ontario </state>
 <pcode> M3Z-5H9</pcode>
 </addr>
 <phone type="work"> 905-555-4789</phone>
 <phone type="home"> 416-555-3376</phone>
 <assistant>
 <name>Peter Smith</name>
 <phone type="home"> 416-555-3426</phone>
 </assistant>
</customerinfo>

create index idx3 on customer (info)

generate key using

xmlpattern ' //name '

as sql varchar(40);

 70

70 © 2011 IBM Corporation
05/30/2011 Template Documentation

XML Indexes

<customerinfo Cid=" 1004">
 <name>Matt Foreman</name>
 <addr country=" Canada">
 <street> 1596 Baseline</street>
 <city> Toronto</city>
 <state> Ontario</state>
 <pcode> M3Z-5H9</pcode>
 </addr>
 <phone type="work"> 905-555-4789</phone>
 <phone type="home"> 416-555-3376</phone>
 <assistant>
 <name>Peter Smith</name>
 <phone type="home"> 416-555-3426</phone>
 </assistant>
</customerinfo>

create index idx4 on customer (info)

generate key using

xmlpattern ' //text() '

as sql varchar(40);

Don’t index everything!
Too expensive for
insert, update, delete !

Here the //text means you want to create an index on all the values, but that’s not
recommended because you are creating an index that is too big. An analogy would be to
this: if you are working on a table and creating a relational index, it’s like creating an index
on all the columns of the table, and that’s not recommended. It would be too big, so when
you do insert, update or delete, you will also update the index, and that will cause more
performance issues.

 71

71 © 2011 IBM Corporation
05/30/2011 Template Documentation

Agenda

• Overview

• Inserting XML data

• XPath

• XQuery

• Querying XML data using SQL/XML

• Querying XML data using XQuery

• Update & Delete operations with XML

• XML Indexes

• XML Schema Validation

• Other XML support

 72

72 © 2011 IBM Corporation
05/30/2011 Template Documentation

XML Schema validation

� XML Schemas are supported using “XML Schema reposi tories”

� To validate based on an XML Schema you can:

�Use the XMLVALIDATE function during an INSERT

�Use a BEFORE Trigger

� To test if an XML document has been validated, you can use the
“IS VALIDATED” predicate on a CHECK constraint

You can perform validation of your XML document using XML schemas which can be
stored in XML Schemas repositories in the database.

You can use the XMLVALIDATE function in your insert statement or a BEFORE trigger to
validate against XML Schemas you registered and stored in the XML Schema repository
and that would done per row.

A CHECK constraint, using the IS VALIDATED predicate can be used to detect if a given
column has been validated using XMLvalidate.

 73

73 © 2011 IBM Corporation
05/30/2011 Template Documentation

Validating with an XML schema (example)

INSERT INTO t1 VALUES(xmlvalidate (xmlparse(document('<?xml
version="1.0" encoding="UTF-8"?>

 <po:PurchaseOrder xmlns:po="http://www.test. com/po">

 <Header>

 <Id>1</Id>

 ...

 </Header>

 <Items>

 ...

 <Item>

 ...

 </Item>

 </Items>

 <Customer type="regular">

 ...

 </Customer>

 </po:PurchaseOrder>')) ACCORDING TO XMLSCHEMA ID order));

DROP TABLE t1;

CREATE TABLE t1 (po xml);

INSERT INTO t1 VALUES(xmlvalidate (xmlparse(document('<?xml version="1.0" encoding="UTF-8"?>

 <po:PurchaseOrder xmlns:po="http://www.test.com/po">

 <Header>

 <Id>1</Id>

 <date>2004-01-29</date>

 <description>purchase order</description>

 <value>20</value>

 <status>shipped</status>

 </Header>

 <Items>

 <Item>

 <ItemDescription color="red" weight="5">

 <Name>Widget C</Name>

 <SKU>1</SKU>

 <Price>30</Price>

 <Comment>no comment</Comment>

 </ItemDescription>

 <NumberOrdered>1</NumberOrdered>

 </Item>

 </Items>

 <Customer type="regular">

 <Name>Manoj K Sardana</Name>

 <Address>ring road, bangalore</Address>

 <Phone>918051055109</Phone>

 <email>msardana@in.ibm.com</email>

 </Customer>

 </po:PurchaseOrder>')) ACCORDING TO XMLSCHEMA ID order));

 74

74 © 2011 IBM Corporation
05/30/2011 Template Documentation

pureXML schema flexibility

 No Schema One Schema Schema V1 Doc uments Any mix you want!
 & Schema V2 w/ and w/o

 schema

• Document validation for zero, one, or many schemas per XML column:
 Always Well Formed XML

 (a) (b) (c) (d) (e)

Most databases only support (a) and (b). DB2 allow s (a) through (e).

This shows you can validate different rows per XML column using different XML
schemas

 75

75 © 2011 IBM Corporation
05/30/2011 Template Documentation

Agenda

• Overview

• Inserting XML data

• XPath

• XQuery

• Querying XML data using SQL/XML

• Querying XML data using XQuery

• Update & Delete operations with XML

• XML Indexes

• XML Schema Validation

• Other XML support

 76

76 © 2011 IBM Corporation
05/30/2011 Template Documentation

Other XML support

� Based-table inlining and compression of small XML
documents

� Can transform XML documents using XSLT functions

� Compatible XML Schema evolution using the UPDATE
XMLSCHEMA command

� pureXML supported for UNICODE or non-UNICODE
databases

� Annotated XML Schema Decomposition

Normally, XML is stored in different object, and in the table we have a pointer to this
object. Base table inlining and compression of small XML documents means that if the
XML document is not big and it can fit into the same table then DB2 will store it with the
base table and row compression can apply also to XML documents.

There is support for XSLT functions, so you can transform your XML documents to provide
a different format like HTML format. You can use CSS (Cascading style sheets) so the
data is displayed nicely.

Compatible XML schema evolution using the UPDATE XMLSCHEMA command means
that your schema can be changing constantly through time. Maybe a string had a given
size, now it has changed; now it is larger, so if you run this update XML schema, as long as
it is not a completely different schema, then the schema can evolve.

We still support XML schema decomposition, if you want to store XML not using pureXML,
but actually decomposing the XML into small pieces and storing each piece in tables.

 77

77 © 2011 IBM Corporation
05/30/2011 Template Documentation

Development support for XML data

C or C++

COBOL

C# and Visual Basic

PHP

Ruby

SQL
Procedures

Java

Perl

pureXML

pureXML is supported with any of these languages. All drivers have been
modified/updated for this support

 78

78 © 2011 IBM Corporation
05/30/2011 Template Documentation

Thank you!

Use the forum in the db2university.com course AA001EN if you have technical questions
about the materials covered in this course. Fellow students, faculty and IBMers can help
you!

