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Abstract Conventional tracking techniques for wireless
networks locate a target by using at least three non-collinear
tracker nodes. However, having such a high density of track-
ers over themonitored area is not always possible. This paper
presents Ghost, a new tracking method based on Voronoi tes-
sellations able to track a target by using less than three tracker
nodes in wireless networks. In Ghost, different locations of
the target create different Voronoi diagrams of the monitored
area by placing virtual nodes around tracker nodes. These
diagrams are used to estimate the current location of the target
by intersecting the previous and current Voronoi diagrams.
The target’s route is constructed by systematically searching
the most likely estimated target’s locations over time. Sim-
ulation results validate that the proposed method has better
tracking accuracy compared with existing proposals. More-
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over, our approach is not tied to a specific technology, thus it
can be applied in different platforms (e.g.,WLANandWSN).
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Sparse wireless networks

1 Introduction

Tracking systems in wireless networks are usually composed
by a set of scattered fixed nodes in themonitored area that are
able to estimate the target’s route over time. Estimating a tar-
get’s route in wireless networks is a nontrivial task due to the
presence of several factors in the monitored area that make
network conditions change frequently such as: obstacles, sig-
nal interference, irregular areas and power outages. These
factors may also cause changes in network topology andmay
cause loss of connectivity in some areas. On the other hand,
tracking systems typically use trilateration methods by using
three or more non-collinear fixed nodes to locate a transmit-
ting target [1,2]. The problem with this method is that not all
network infrastructures can guarantee the presence of three
tracker nodes everywhere in the network. For instance, in
home, hotspot and university networks, having connectivity
by a single Access Point (AP) is considered satisfactory. We
consider that having less than three tracking nodes detecting
the presence of a moving node is a common situation.

Over the past years, various proposals focused on increas-
ing tracking accuracy and energy efficiency [3,4]. However,
less attention has been paid to scenarios where less than three
fixed trackingnodes are available to estimate the target’s loca-
tion/route. To overcome this limitation we propose Ghost, a
new tracking method based on Voronoi tessellations [5] able
to track a target by less than three tracker nodes in wireless
networks. Ghost is composed by three main elements:
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(a) (b)

(c)

Fig. 1 Ghost Operation: a Ghost selects the most probable polygon
where the target node is located at time t − 1 (see polygon filled in
gray color). bWhen a new detection is obtained at time t , Ghost selects

again the most probable polygon where the target node is located. c
Ghost intersects the previous and current selected polygons in order to
create a smaller polygon enclosing the target’s location

– A target node. It is a mobile node that has a wireless trans-
ceiver.

– A tracker node. It is a fixed wireless node within the
monitored area that has the abilities of sensing and com-
puting the distance between the tracker and the target
node [6].

– A sink node. It is a processing center that collects infor-
mation from several tracker nodes and is able to compute
the target’s route using the Ghost algorithm.

In Ghost, locating a target node involves three phases.
First, tracker nodes estimate how far from the target node
they are and report the estimated distance to the sink node.
Second, the sink node divides the monitored area into small
regions by using a Voronoi tessellation algorithm [5] that
takes into account two sets of points. The first set is composed
by tracker nodes in themonitored area givenby their cartesian
coordinates, see Fig. 1a, b. The second set is composed by
virtual nodes.Virtual nodes are placed along a circle centered
on each tracker nodehaving a radius equal to: (i) the estimated
distance to the target node, which is reported to the sink node
by trackers detecting the target node (see Fig. 1a, b), (ii) the
maximum transmission range for trackers not detecting the
target node. By placing virtual nodes around each tracker
node, Ghost can create different Voronoi diagrams for each
new location of the target node. Moreover, by increasing the

number of virtual nodes, Ghost can narrow down the location
of the target node into a smaller Voronoi region (i.e., convex
polygon) due to the fact that the number of Voronoi regions
increases linearly with the number of virtual nodes [5]. Third
and finally, Ghost utilizes the current Voronoi diagram to
select the most probable polygon(s) where the target node is
located by using a point location algorithm [5,7].

Since the Voronoi diagram of the monitored area changes
while the target node moves (see Fig. 1a, b), Ghost esti-
mates the target’s route by intersecting the current polygon(s)
chosen by point location algorithm at time t with selected
polygon(s) computed at time t − 1. The result of each inter-
section (if it exists) is a smaller polygon(s) enclosing the
likely location of the target node, see Fig. 1c. These poly-
gons are used to build a graph G where the center of each
polygon is used as a vertex of the target’s route (i.e., the
estimated location of the target node).

The main contribution of this paper is that whereas most
tracking proposals require continuous coverage by three or
more tracker nodes to operate properly, we propose a tech-
nique able to track a target node by two or even one tracker
node. In this way, our approach is more feasible to imple-
ment given that it considers more realistic scenarios where
only one or two trackers detect the target node; we named
these scenarios as {one,two}-coverage detection. Moreover,
we introduce a new technique to narrow down the area where
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the target node is located by placing virtual nodes around real
trackers.

The rest of this paper is organized as follows. In Sect. 2, we
present previous works related to localization and tracking
for wireless networks. In Sect. 3, we present the assump-
tions and computational algorithms used by Ghost. Section4
defines the concept of maximum speed circle (MSC) that
provides additional information for cases when only one or
two trackers detect the target node. In Sect. 5, we present a
quantitative evaluation of Ghost in a network simulator writ-
ten in Python language and we compare our approach with
existing tracking techniques. Finally, in Sect. 6, we present
our final remarks.

2 Related work

Tracking a target is typically based on localization appro-
aches that fall into two categories: range-based approaches
and range-free approaches. Range-based approaches use
various techniques to estimate the location of a target
such as: Time of Arrival (ToA) [8], Time Difference of
Arrival (TDoA) [9,10], Angle of Arrival (AoA) [11] and
Received Signal Strength (RSS) [12–14]. Numerous range-
based approaches use a trilateration technique to enhance the
accuracy of target’s location. For instance, in [1], the authors
proposed a trilateration approach to decrease location errors
by applying Kalman filtering techniques over RSSI signals
from a WLAN infrastructure. In [2], the authors proposed
a trilateration approach to locate APs around a neighbor-
hood by mounting a steerable directional antenna on a set
of vehicles driving around the neighborhood. Range-free
schemes, on the other hand, are based on proximity and con-
nectivity schemes. In [4], the locations of wireless sensor
nodes are found by extracting relative location information
from different nodes at different times in order to recon-
struct a two-dimensional map of the monitored area. In [15],
the authors proposed a localization technique by using a
real-valued hop count instead of a traditional integer-valued
hop-count in order to improve the multidimensional scaling
method (MDS). APIT algorithm [16] locates wireless sensor
nodes by dividing the monitored area into triangular regions
in which a sensor node resides. Depending on whether the
node is inside or outside the triangle formed by three anchors,
this algorithm can narrow down the area where a node is
located. For more information on localization approaches
the reader is referred to [17] where the authors presented a
through survey.

Once the position of the target can be estimated over time,
the next challenge is to estimate its trajectory as it roams
in the monitored area. Most tracking approaches based their
operation on predictive probabilistic schemes using Kalman
filters [18–20]. For instance, in [20], the authors applied a

Kalman filter to a set of ToA measurements to smooth out
the estimated target’s route.

Nowadays computational geometry emerged with new
algorithmic techniques that improve and simplify many of
the previous approaches. For example, in [21], the authors
proposed a human tracking system for indoor environments
by placing sparse infrared and ultrasound sensors. This algo-
rithm can distinguish the identity and location of a person
by using learning techniques on human motion and Voronoi
graphs. A tracking algorithm based on a face routing tech-
nique is proposed in [3], where the authors used two types of
sensors named monitor and backup. This algorithm detects
target’s movements by selecting the most likely monitor sen-
sor associated to a face region in order to form a linked list
of monitor and backup sensors as a route for the target node.
In [22], the authors proposed the first tracking framework
based on a polygonal spatial neighborhood by partitioning
the monitored area into polygonal regions using planar graph
algorithms. The main idea of this framework is to select the
most probable polygonal edges the target node is crossing.

In summary, although tracking a target is extremely dif-
ficult to carry out even under simple scenarios, previous
proposals do not consider the case where less than three
fixed tracking nodes detect the presence of the target node.
To the best of our knowledge, the only work dealing with this
problem is [23], where the authors proposed two algorithms
based on predictive information obtained from a Kalman fil-
ter. The first algorithm proposed in [23] is called predictive
location tracking (PLT), which uses predictive information
obtained by a Kalman filter to provide signals from missing
base stations (BS) in order to let trilateration techniques work
properly. The second algorithm called geometric-assisted
PLT (GPLT) adjusts the location of missing BSs by using
geometric dilution of precision metric (GDOP). Because the
twomethods reported in [23] represent the closest approaches
to our work, we compare their performance with Ghost in
Sect. 5.

3 Ghost system model

We consider a set of N tracker nodes placed randomly on a
two dimensional rectangular space with unique identifiers.
For each tracker node located at point p (i.e., (x,y)), we rep-
resent the maximum transmission range as a unit disk graph
(UDG) Cu(p, Rc) centered at point p having a unit radius
Rc. We assume that transmission range is uniform and has
constant radius. A tracker node can detect a target node if
and only if the target node is within the tracker’s UDG cov-
erage.Wemodeled the estimated route of the target node as a
directed graph G(V, E), where the center of a chosen poly-
gon represents a vertex v ∈ V . Two different vertices share a
common edge e(u, v)∈ E if and only if vertex u is chosen by
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Ghost at time t −1 and v is chosen at time t . We assume that
each tracker node knows its own location (e.g., by means of
GPS [24,25] or other localization method [15–17]) and this
location is sent to the sink node.

3.1 Euclidean space division

In Ghost, whenever the target node is detected by at least one
tracker node, Ghost places a circle centered on each tracker
having a radius equal to: (i) the Euclidean distance between
a tracker node and the target node for trackers detecting
the target node. (ii) the maximum transmission range (Rc)
for trackers not detecting the target node. These circles are
divided intom equal arcs, where two arcs share a point called
virtual node as shown in Fig. 1a, b. These virtual and tracker
nodes are used as input to the Voronoi algorithm in order to
divide the Euclidean space of the monitored area into smaller
regions. The Voronoi algorithm creates m × N + N convex
polygons, where N is the number of tracker nodes (i.e., real
nodes in the monitored area) and m is the number of virtual
nodes per tracker node. In other words, each tracker node and
each virtual node in the monitored area has an associated
convex polygon. The time complexity cost of the Voronoi
tessellation algorithm is O(n log n) [5], where n is equal to
m×N +N . It is important to mention that the number of vir-
tual nodes creates a tracking accuracy and time complexity
trade-off that will be discussed in Sect. 5.

In Ghost, tracking a target involves three main cases
named {three,two,one}-coverage detection, which are
described in the following subsections.We present the opera-
tion of Ghost without considering distance estimation errors
and we assume that the Euclidean space is divided by the
sink node using the Voronoi algorithm [5,21,26]. Later, we
will introduce an error model in the simulation section.

3.2 Three-coverage detection

Ghost uses a trilateration technique [1] whenever the target
is detected by three or more tracker nodes. This technique
returns the location of the target node as point p. This point
strictly lies within a polygon P in the monitored area. Ghost
uses point location algorithm [5,7] to find polygon P . In
Ghost, we used slab decomposition as point location algo-
rithm [5]. the current polygonal subdivision of the monitored
area (given by the current Voronoi diagram) is partitioned by
drawing vertical lines through each vertex. Two consecutive
vertical lines form a slab region in which the x-coordinate
of each vertex is sorted in an array. The slab decomposition
algorithm uses binary search in O(log n) time to find the
x-coordinate of point p. A similar process is used for the
y-coordinate. Then, the x and y coordinates of point p are
linked to a unique polygon P within the polygonal subdivi-
sion. In a real scenario; however, the estimated location of

the target node may be different to its real location due to
distance estimation errors. Therefore, Ghost uses the center
of the chosen polygon P as the most appropriate estimated
location of the target node.

In cases when the target node is located by three trackers
at consecutive times, the target’s route is constructed as fol-
lows: let P and Q be two polygons chosen by Ghost at time
t and time t − 1, respectively. Let Z be the convex polygon
resulting by intersecting the polygons P and Q. Ghost con-
structs target’s route by linking the center of polygonQwith
the center of polygon Z , and the center of polygon Z with
the center of polygon P (i.e., Ghost links vQ → vZ → vP ).
In case polygon Z is ∅ (i.e., no intersection occurs between
polygonsP andQ), Ghost links the center of polygonQwith
the center of polygon P (i.e., vQ → vP ). Ghost computes
polygon intersection in O(m + n) time [27], where m and n
are the vertices of polygons Q and P , respectively.

All locations of the target node obtained by at least three
tracker nodes are called hook points. These points might be
used as anchor points in order to reduce the uncertainty of
possible locations of the target node when less than three
tracker nodes detect the target node, as it is shown in the
following subsections.

The operation of Ghost in pseudo code for a three-
coverage detection case is shown in Algorithm 1.

Algorithm 1 Three-coverage detection.
Require: Define m (number of virtual nodes per tracker).
1: if a target node is detected by at least three tracker nodes then
2: Send the estimated distances to the sink node.
3: Compute Voronoi diagram of the monitored area.
4: Select polygon P where the target node is located.
5: Link the center of polygon P (i.e., vP ) with graph G.
6: Concatenate vP to the set of hook points.
7: end if
8: if an intersection takes place between polygons Q and P then
9: Compute polygon Z.
10: Link vQ → vZ → vP .
11: else
12: Link vQ → vP .
13: end if

3.3 Two-coverage detection

Figure2a shows the casewhenonly two tracker nodes (v1, v2)
detect the target node, resulting in an overlapping region cre-
ated by intersecting the coverage area of each tracking node.
This intersection generates two possible locations of the tar-
get node (i.e., l1 and l2). One of these locations is the real
location of the target node and the other is called themirrored
location.

The mirrored location of the target can be discarded in
some special situations. We illustrate this case in Fig. 2b,
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v1 v2

l1

l2 Tracker node

Target node

(a)

v1 v2 v4

v3

l2

l1

Tracker node

Target node
Maximum transmission range
Communication range

(b)

Fig. 2 Two possible locations of the target in two-coverage detection

where tracker nodes v1 and v2 detect the presence of the
target node and send their estimated distances to the sink
node. The sink node can eliminate the mirrored location of
the target node if and only if the mirrored location lies within
the coverage area of the nearest neighbors (e.g., v3 and v4 in
Fig. 2b) to the two-coverage detection, since these neighbors
do not detect the presence of the target node. In the example
of Fig. 2b, the real location of the target is l2, while l1 is
the mirrored location. Location l1 lies within v3’s coverage
area, thus it can be discarded by the sink node since node
v3 does not detect the target node. In the same example,
however, if the mirrored location lies in the shadowed region
(see Fig. 2b), it is not possible to discard themirrored location
since this location lies outside v3 and v4 coverage area. In
Sect. 4 we will use the concept of maximum speed circle
(MSC) to discard the mirrored location in cases when the
previous method does not apply.

3.4 One-coverage detection

In sparse networks, one-coverage detection is a common sit-
uation resulting in an infinite number of possible locations

v1

Tracker node

Possible locations of the target

Target node

Fig. 3 One-coverage detection

(a)

(b)

Fig. 4 One-coverage detection using virtual nodes. aVoronoi diagram
formed by eight virtual nodes and one tracker node.bDonut constructed
by intersecting polygons at time t − 1 with polygons at time t

of the target node around the tracker node, see Fig. 3 where a
target node is detected by one tracker node only. Ghost over-
comes this drawback by placing virtual nodes around the
tracker node detecting the target. Figure4a shows a Voronoi
diagram formed by eight virtual nodes and one tracker node.
As we can see in this figure, using the center of the chosen
polygons (i.e., polygons filled in gray) the likely location
of the target might result in a large location error. This
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(a) (b)

Tracker node
Possible locations of the target

Tracker node
Possible locations of the target

[Vmin, Vmax] Vknown

Fig. 5 Maximum speed circle scope

occurs because some of these polygonsmay have unbounded
edge(s). To solve this problem, Ghost limits the size of each
chosen polygon in one-coverage detection by intersecting
computed polygons at time t with computed polygons at
time t − 1. Figure4b illustrates the result of this process.
Note that we use virtual nodes computed at time t − 1 to
compute Voronoi diagram at time t . This process constructs
a set of polygons in which each polygon (filled in gray) is
bounded by four edges, as shown in Fig. 4b. We called this
set of polygons a donut.

4 Maximum speed circle

This section introduces the concept of maximum speed cir-
cle (MSC), which is used to provide additional information
when a target node is located within {one,two}-coverage
detection. We define the MSC as a circle containing all
possible locations of the target between two consecutive tar-
get’s detections. The MSC can be seen as a circle with zero
radius located at the center of previous selected polygon,
increasing its radius at a certain speed until a new detec-
tion is obtained. For cases where the speed is unknown but
bounded in the interval [0, Vmax ], the MSC increases its
radius at maximum target’s speed. All points inside theMSC
are possible locations of the target node because it can move
freely between two consecutive detections (see the gray area
in Fig. 5a). In Ghost, we also consider the case when tar-
get’s speed is known or it can be estimated (Vknown). In this
case, only points in the perimeter of MSC are valid loca-
tions of the target node as long as the target node does not
change its trajectory in the interval [t − 1, t], as shown in
Fig. 5b.

4.1 Two-coverage detection using MSC

MSC can be used to discard the mirrored location of the
target node in a two-coverage detection as follows: the MSC
is initially located at the last known location of the target (e.g.,
hook point or closest known location(s) before entering the

Two possible locations of the target

MSC

v1 v2

l1

l2

Tracker node

Hook point

Fig. 6 Two tracker nodes using MSC

two-coverage detection) with radius equal to zero. Then the
MSC increases its radius at the speed of the target node (e.g.,
Vmax or Vknown) until a new detection is obtained. Ghost
can discard the mirrored location if and only if the mirrored
location falls outside theMSC. To illustrate this, Fig. 6 shows
the last hook point of the target node (shown as �) and the
overlapping region created by two tracking nodes (v1 and v2).
In this example, location l2 lies outside the MSC, thus it can
be discarded. Note that the last hook point necessarily was
computed at time t − 1. If no hook point or known locations
exist, then Ghost cannot discard the mirrored location of the
target, because noMSC can be placed at any previous known
location.

Target’s route within two-coverage detection is built by
connecting the center of the current MSC with the center
of the polygon enclosing the chosen target’s location (see
Fig. 7a). In case the mirrored location cannot be discarded
(i.e., both, real and mirrored location are inside the current
MSC), Ghost links the center of the current MSC with the
center of the polygon enclosing the real and mirrored loca-
tions (see Fig. 7b). Then, a new MSC with radius equal to
zero is placed at the center of each chosen polygon (i.e., the
new hook point) in order to repeat the process until the target
node leaves the two-coverage detection.

In cases where the target node is located by two trackers at
consecutive times, the target’s route is constructed as follows:
let P and Q be two polygons chosen by Ghost at time t and
time t−1, respectively. LetZ be the convex polygon obtained
by intersecting polygons P andQ. Ghost constructs target’s
route by linking the center of polygon Q with the center of
polygon Z , and the center of polygon Z with the center of
polygon P (i.e., Ghost links vQ → vZ → vP ). In case
polygonZ is ∅, Ghost links the center of polygonQwith the
center of polygon P (i.e., vQ → vP ).

The operation of Ghost in pseudo code for a two-coverage
detection is shown in Algorithm 2.
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MSC

v1 v2

l1

l2

(a)

MSC

l1

l2
v1

v2

(b)

Two possible locations of the target
Center of the polygon
Tracker node
Hook point

Fig. 7 Building target’s route in two-coverage detection using MSC

Algorithm 2 Two-coverage detection.
Require: Define m (number of virtual nodes per tracker).
1: if a target node is detected by two tracker nodes then
2: Send the estimated distances to the sink node.
3: Compute Voronoi diagram of the monitored area.
4: if mirrored location is discarded by the current MSC then
5: Select polygon P where the target node is located.
6: Link the center of the current MSC to the center of polygon P .
7: Place a new MSC at the center of the polygon P with radius

equal to zero.
8: else
9: Select the two polygons where the target node is located (i.e.,

real and mirrored location).
10: Link the center of the current MSC to the center of the two

chosen polygons.
11: Place a new MSC at the center of each chosen polygon (i.e.,

vreal and vmirrored ) with radius equal to zero.
12: end if
13: end if
14: Go to 1 until the target node leaves the two-coverage detection.

4.2 One-coverage detection using MSC

Now let us explain how Ghost uses MSC to construct the tar-
get’s route in one-coverage detection. For instance, consider
the last location of the target is known before entering the
one-coverage detection (e.g., hook point). This point repre-
sents the root point in one-coverage detection where a MSC
with zero radius is located. Then, theMSC’s radius increases
until a new detection is obtained. This detection necessarily
lies into a one-coverage detection where a new donut is con-
structed by using virtual nodes at time t and virtual nodes at
time t−1. In case no virtual nodes at time t−1 are available,
Ghost computes virtual nodes using a circle centered on the
tracker node having a radius equal to the Euclidean distance
between the tracker node and the hook point. To illustrate
this, Fig. 8 shows the current MSC centered at point v0 (i.e.,
the root point) and the current donut. Ghost constructs tar-

v0

v1 v2

Target Node

Center of polygon
Root point

MSC

Fig. 8 Building graph G within one coverage detection

get’s route by connecting the center of the current MSC with
the center of polygons located inside the current MSC. In
this example, two edges are formed. The first edge connects
nodes v0 and v1, while the second edge connects nodes v0
and v2. Then, a new MSC with radio equal to zero is placed
on nodes v1 and v2 in order to repeat the process until the tar-
get node leaves the one-coverage detection. Figure9 shows
this process as time passes.

It is important to mention that before constructing the
current donut, Ghost determines the scope of one-coverage
detection. Figure10 shows v1’s coverage area overlapping
with two other trackers (v2 and v3). In this figure we can
see that only points around the one-coverage detection are
chosen as virtual nodes. In order to determine the scope of
one-coverage detection, Ghost uses kd-tree algorithm [28] to
find the nearest neighbors in O(n log n) time.

The operation of Ghost in pseudo code for one-coverage
detection case is shown in Algorithm 3.

Algorithm 3 One-coverage detection.
Require: Define m (number of virtual nodes per tracker).
1: if a target node is detected by one tracker node then
2: Send the estimated distance to the sink node.
3: Compute current donut.
4: Link the center of the current MSC(s) with the center of the poly-

gon(s) lying inside the current MSC(s).
5: Place newMSCwith radio equal to zero on each selected location.
6: end if
7: Go to 1 until the target node leaves the one-coverage detection

In one-coverage detection, the larger the number of vir-
tual nodes, the larger the number of possible paths created
while tracking a target. In order to seek an optimal path solu-
tion Ghost uses the backtracking algorithm (BT) [29]. But
before we approach the optimal path solution, it is important
to explain how Ghost ends the paths within the one-coverage
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(a) (b)

(c)

Fig. 9 Polygons selected by Ghost as time passes. a Donut at time t . b Donut at time t + Δt . c Donut at time t + 2Δt

1
2

3

Virtual nodes

v1

v2

v3

2

Tracker nodes
{1, 2, 3}-coverage detection

Fig. 10 Scope of one-coverage detection

detection (i.e., endpoints in graph G for one-coverage detec-
tion). Figure11 illustrates a target node (shown as�) near the
boundary of one-coverage detection. Points v j , vk, vm, vn, vl
are the center of each current MSC, respectively. Only the
maximum speed circles reaching the next known location of
the target (vz) are chosen as endpoints of the graph. Note that
vz is necessarily located outside the one-coverage detection.

vj

vk

vm

vn

vl

vz

Tracker node
Virtual nodes
Last known location
Target location

MSC

Fig. 11 Endpoints in one-coverage detection

In this example, points vk and vm are chosen as endpoints of
possible paths in one-coverage detection.

In the event that no hook points exist before entering the
one-coverage detection, Ghost can use any previous loca-
tion(s) discovered by two-coverage detection. This includes
the real location, mirrored location or both as well as a set

123



Ghost: Voronoi-based tracking in sparse wireless networks using virtual nodes

of endpoints discovered in a previous one-coverage detec-
tion. In case no points exist before entering the one-coverage
detection, Ghost cannot place any MSC in order to reduce
the uncertainty. However, this is an unlikely event as Ghost
eventually will find points in a two-coverage or tree-coverage
detection as time passes which can be used as hook points
before entering a one-coverage detection.

Once the endpoints are obtained, Ghost seeks the optimal
path solution in one-coverage detection by using the back-
tracking algorithm which is a simple recursive technique to
optimize searches. This algorithm seeks the best partial solu-
tion systematically by satisfying a constraint function in order
to obtain a global optimal solution. InGhost, these constraints
are the set of endpoints and the number of detections during
target’smovementswithin the one-coverage detection. These
constraints imply that only paths whose lengths are equal to
the number of detections in one-coverage detection are valid
paths. The backtracking algorithmallowsGhost to find: (i) all
paths between the root point and all endpoints, (ii) the short-
est path between the root point and a chosen endpoint, (iii) a
random path. Because the backtracking algorithm accounts
for most of the processing time in Ghost, we analyze the BT
worst-case running time below.

A constraint satisfaction problem (CSP) consists of a set
of variables, X = {x1, . . . , xn}, where each variable xi ∈ X
has an associated finite domain D = {D(x1), . . . , D(xn)},
and a set of constraints C , where each Ci is in the form of
Ci = {Xi 1, Xi 2, . . . , Xi j } [30]. A solution in a constraint
problem is an assignment of a value D(xi ) that satisfies
one or all constraints. If no solution exists, the CSP is
inconsistent. For any partial solution (v1, v2, . . . , vi ), the BT
algorithm tries to assign the next value to the next vari-
able (v1, v2, . . . , vi , vi+1). If this partial solution satisfies
the constraints C j (i+1) ∈ C , then the BT algorithm tries
to assign a new value to the next variable. In case the par-
tial solution is inconsistent, then the BT algorithm tries to
assign another value from D(xi+1). If a value cannot be
assigned, the BT backtracks to xi and tries another value
D(xi ). The search space to assign a consistent value is at
most

∑n
i=0 d

i = dn+1−1
d−1 , where n is the number of vari-

ables X (in Ghost this is the number of polygons selected
by MSC) and d is the size of largest domain. Therefore,
the time complexity for every assignment D(xi ) is at most
O(dn). The BT searches in n vertices, thus, the total running
time for the BT algorithm is at most O(ndn). A filter-
ing technique can be applied to optimize the search space
in CSP. For example, when a value D(xi ) is inconsistent
with the C j (i), we can remove or prune the search space
for futures variables. In Ghost, when a path is larger than
the number of detections in one-coverage detection, we can
prune the tree to reduce the size of current domain. In [30]
the authors analyzed the cut-set decomposition algorithm

whose time complexity cost by using a filtering technique
is O(nd2).

On the other hand, it is easy to see that one-coverage
algorithm is the main algorithm in Ghost, while the two-
coverage and three-coverage algorithms are a particular case
of one-coverage algorithm. Indeed, the BT algorithm can
be used in two-coverage detection to discard the mirrored
location(s) by seeking the optimal path solution using the
available endpoints and the number of detections of the tar-
get in two-coverage detection as constraints.

5 Simulation and results

In this section, we assess the location errors of our track-
ing method. First, we study tracking accuracy as a function
of the number of virtual nodes by isolating {three,two,one}-
coverage detection cases. Then, we study tracking perfor-
mance on a larger network having many tracker nodes.
Finally, in Sect. 5.4, we compare Ghost’s performance versus
PLT and GPLT algorithms [23].

5.1 Noise model

Asmentioned before, in {three,two,one}-coverage detection,
the target’s locations are associated to the center of chosen
polygons by Ghost. Thus, let us define the mean tracking
error as the average Euclidean distance between the center
of the polygon enclosing the estimated location of the target
by Ghost and the real target’s location for all points in the
trace. For trackers detecting the presence of the target node,
Ghost estimates the distance between a tracker node and the
target node as:

ri,k = di,k + ni,k + ei,k i = 1, 2, 3, . . . , N (1)

where ri,k denotes the estimated distance between the i th
tracker and the target node at time k. di,k is the real Euclidean
distance between the i th tracker node and the target node at
time k. ni,k is the added noise, which is assumed to follow
a Gaussian distribution with zero mean and three meters of
standard deviation. Finally, ei,k denotes the non-line-of-sight
(NLOS) error [31], which is modeled using an exponential
distribution as follows.

ei,k(v) =
{

1
λi,k

exp
(
− v

λi,k

)
v > 0

0 otherwise
(2)

where λi,k = c · τm(di,k)ερ. Parameter c is the speed of
light, τm is the median value of the RMS transmission delay
between the i th tracker and the target, which is selected as
0.1µs in the simulation. ε is the path loss exponent which is
selected as 0.5. Finally, ρ is the shadow fading factor which
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Table 1 Simulation parameters

Parameter Value

Transmission range 100m

Monitored area length 1900m

Monitored area width 1100m

Origin of coordinates Left upper corner

Gaussian distribution N (0, 9)

Speed interval [1–5]m/s

Time interval between two consecutive detections 1 s

Mobility model RWP

is a log-normal random variable with zero mean and a stan-
dard deviation of 4dB. Values used in this noise model were
extracted from [23].

In the following subsection, we evaluated our system
by running simulations on a custom simulator written
in Python language. First, we evaluated simulations for
{three,two,one}-coveragedetection in isolation.Nodesmove
according to the Random Way Point model (RWP) [32] and
we ran each experiment 50 times to get average values. The
parameters used for these experiments are shown in Table1.

5.2 Experiments in isolated {three-two-one}-coverage
detection

For the three-coverage detection experiments, tracker1 is
located at coordinates (558, 287), tracker2 is located at (498,
285) and tracker3 is located at (530, 333), all coordinates
are in meters. Target’s trajectory uses a RWP model whose
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(c) (d)

Fig. 12 Average tracking error for isolated {three,two,one}-coverage
detection. aAverage tracking error in three-coverage detection. bAver-
age tracking error in two-coverage detection. c Average tracking error

in one-coverage detection using Vknown . d Average tracking error in
one-coverage detection using speed interval [Vmin, Vmax ]
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endpoints are located in (501, 339) and (553, 259) in m. The
trajectory is chosen within the overlapping region created by
the three tracker nodes. We evaluate tracking errors using a
different number of virtual nodes per tracker ranging from
5 to 50 in steps of 5. Figure12a shows the mean tracking
error of isolated three-coverage detection vs. number of vir-
tual nodes per tracker node using the coordinates mentioned
above. This figure shows how tracking errors decrease as
the number of virtual nodes increases, which is the result of
having smaller polygonal regions enclosing the target node’s
location.

For the two-coverage detection experiments, tracker1 is
located at (521, 300) and tracker2 is located at (597, 300)
in meters. Target’s trajectory uses a RWP model whose end-
points are located in (529, 356) and (588, 247) in meters. As
we mentioned before, when two trackers detect the target,
two possible paths are formed along the target’s trajectory.
We report the mean tracking error by estimating the distance
between the centers of both associated polygons with respect
to the real target’s location. In these experiments noMSCwas
used, thus no mirrored locations were discarded. Figure12b
shows how tracking errors decrease as the number of virtual
nodes increases in isolated two-coverage detection, which
again is the result of enclosing the target node with smaller
polygons.

For one-coverage detection simulations we assume to
know both the entry point (root point) and the exit point of
graph G. Tracking errors in one-coverage detection depend
on the number of virtual nodes and the knowledge of the
target’s speed. For cases when target’s speed is known, the
backtracking algorithm seeks the closest weighted edge to
the target’s speed for each detection along the one-coverage
detection. On the other hand, when target’s speed is unknown
but bounded in the interval [0, Vmax ], the backtracking algo-
rithm selects all edges inside the current MSC(s) along
the one-coverage detection. In both cases, we compute the
mean tracking error by estimating the average Euclidean dis-
tance between the real location of the target and the center
of selected polygon(s) for every detection inside the one-
coverage detection. For these experiments, the tracker node
is located at (603, 325) in meters, and target’s speed is con-
sidered as 4m/s. Target’s trajectory uses RWP model whose
entry point is located at (523, 394) and exit point is located
at (673, 404), in m. Figure12c shows again how tracking
errors decrease as the number of virtual nodes increases
in one-coverage detection. Our simulations show that hav-
ing more than 15 virtual nodes decreases tracking errors
monotonically. However, the cost of computing the optimal
path increases exponentially as the number of virtual nodes
increases (as we showed in Sect. 4.2 ). It is important to men-
tion that the cases with less than 15 virtual nodes per tracker
node are not reported in Fig. 12c, d. This situation arises
because the distance between two consecutive virtual nodes

(a)

(b)

(c)

(d)

Fig. 13 Tracking in a large network scenario. a Large network using
five virtual nodes per tracker. b Large network using five virtual nodes
per tracker. c Large network using 25 virtual nodes per tracker. d Large
network using 25 virtual nodes per tracker

in the donut was greater than theMSC’s diameter. As a result
theMSCdidnot reach the center of polygons inside thedonut,
thus edges in graph G could not be connected.
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Fig. 14 Tracking error for large network scenario

Figure12d shows the results of our simulations for the
case when target’s speed is chosen randomly in the interval
[1, 5]m/s. In this figure, we can observe that having less than

15 virtual nodes per tracker node results in a disconnected
graph, similar to the case when the target’s speed is known.
We can also observe in this figure that having more than
15 virtual nodes per tracker node decreases tracking error
monotonically.

5.3 Tracking in a large network

We also performed experiments in a large network with 36
tracking nodes located randomly in the monitored area using
the same parameters shown in Table1. Figure13a illustrates
the real target’s route and computed polygons byGhost using
five virtual nodes per tracker node, while Fig. 13b shows the
real target’s trajectory (gray line) vs. computed trajectory
by Ghost (dashed line). In Fig. 13b we can see graph G is
disconnected in some places because too few virtual nodes
were used (particularly in one-coverage detection). Fig. 13d
shows the same network scenario but now considering 25
virtual nodes per tracker node. In this figure we observe that
the estimated route of the target is not disconnected, and it is
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Fig. 15 Ghost vs. PLT and GPLT algorithms. a Simulation time. b Tracking performance
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similar to real target node’s trajectory. In Fig. 13c we can see,
as expected, that the size of chosen polygons by Ghost are
smaller compared with selected polygons in Fig. 13a. Fig-
ure14 illustrates how tracking errors decrease as the number
of virtual nodes increases on a large network scenario. It
is important to mention that MSC for {one,two}-coverage
detection were used in these experiments.

5.4 Ghost vs. PLT and GPLT

Because Ghost, GPLT and PLT algorithms [23] are focused
on tracking a moving target by less than three trackers (i.e.,
{one,two}-coverage detection), we compared Ghost’s per-
formance with them algorithms [23]. In [23] the authors
proposed a scenariowhere the number of base stations detect-
ing the target node changes over time. Figure15a illustrates
this arrangement, where BSi denotes the i th base station
detecting the target node at specific times. We used the same
noise model parameters (N (0, 100)), the same dimensions
of the monitored area, a similar target’s trajectory, the same
velocity model and the same transmission range as proposed
in [23] to compare themean average tracking error over time.
In this experiment we used 30 virtual nodes per tracker node
because our isolated simulations showed this setting provides
a satisfactory performance for most scenarios. Figure15b
shows the mean tracking error vs. simulation time. In this
figure we can see Ghost outperforms GPLT and PLT algo-
rithms in most of the trace. This is especially clear in the
interval [78–129] s where only one or two BSs detect the tar-
get node. The fact that Ghost optimizes searches by using
the backtracking algorithm whose criterion function is the
number of tracking detections during one-coverage detection
results in a smaller set of possible paths. In contrast, PLT and
GPLT algorithms do not apply a criterion function to reduce
possible paths in {one,two}-coverage detection resulting in
larger tracking errors. Moreover, as the number of virtual
nodes increases, the area per polygon narrows down inGhost,
resulting in a smaller Euclidean distance between the center
of selected polygons and the real location of the target.

6 Conclusions

In this paper, we propose a model to track a target node
in sparse wireless networks. The proposed method is espe-
cially suited for cases when less than three tracker nodes
detect the target node. We demonstrate that even for cases
when only one tracker detects the target node, a set of pos-
sible paths could be constructed. Simulation results show
that using dynamic Voronoi diagrams of a monitored area
enhances tracking accuracy compared with other proposals
found in the literature. Finally, evaluation results demonstrate
that tracking a target usingvirtual nodes in a dynamicVoronoi

framework enhances tracking accuracy by reducing the size
of regions where the target node is likely located, especially
for {one,two}-coverage detection.
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