Ingeniería en Computación 2020-2

Jorge A. Solano

División de Ingeniería Eléctrica Facultad de Ingeniería UNAM

Semana	Práctica
1	Presentación.
2	Aplicaciones de arreglos .
3	Aplicaciones de apuntadores.
4	Tipo de dato abstracto.
5	Almacenamiento en tiempo de ejecución.
6	Estructuras de datos lineales: Pila y cola.
7	Estructuras de datos lineales: Cola circular y cola doble.
8	Estructuras de datos lineales: Lista simple y lista circu-
	lar.
9	Estructuras de datos lineales: Lista doblemente ligada y
	lista doblemente ligada circular.

Semana	Práctica
10	Clase libre
11	Lenguaje de programación Python (parte 1).
12	Lenguaje de programación Python (parte 2).
13	Estrategias para construcción de algoritmos.
14	Recursividad.
15	Clase libre
16	Evaluación de habilidades

Evaluación del laboratorio				
	80 %	Prácticas		
	20 %	Examen final		
	100 %	Calificación de laboratorio	•	

- Si $CL \ge 6$ entonces se acredita el laboratorio.
- Se deben presentar todas las prácticas para aprobar el laboratorio.

Rango de calificaciones

Si $CL \ge 6$ entonces:

Si los decimales son > 0.5 entonces:

CL sube al siguiente valor entero.

En caso contrario:

CL baja al valor entero anterior.

En caso contrario:

Si $0 \le CL \le 2$ entonces:

$$CL = NP$$

En caso contrario

$$CL = 5$$

Normas	Sanciones
15 minutos de tolerancia.	Ya no se permite el acceso.
Prohibido ingerir alimentos.	Bebidas no pasan.
No burlarse	Implementar un algoritmo ele-
	gido por el grupo
Mantener celular sin sonido.	Acomoda el laboratorio al final
No tomar fotos.	100 veces 'No debo tomar fo-
	tos' (a mano)
No entregar prácticas iguales.	Se anulan las involucradas

Reporte de la práctica

Por práctica se debe entregar:

- Reporte individual en PDF.
- Código fuente.

El reporte debe contener: carátula, objetivos, descripción de las actividades realizadas, resultados obtenidos y conclusiones.

Una vez validada y calificada en el laboratorio se sube a GitHub (se envía el enlace al correo electrónico).

Dentro del laboratorio

Responsabilidades

Se debe cumplir con el reglamento del laboratorio.

Se deben cumplir los objetivos de la práctica.

Se deben realizar la encuesta final del laboratorio y de teoría.

Las fallas o faltantes de equipo se reportan inmediatamente.

Bibliografía

Libros

- Andrew S. Tanenbaum. (2000). Organización de Computadoras. Un Enfoque Estructurado. México: Prentice Hall.
- Osvaldo Cairó / Silvia Guardati. (2016). Estructuras de datos. México: Mc Graw Hill.
- Brian W. Kernighan, Dennis M. Ritchie. (1991). El lenguaje de programación C. USA: Pearson Educación.

Bibliografía

Libros

- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. (2002). Introduction to Algorithms. London, England: The MIT Press and McGraw-Hill.
- Steven S. Skiena. (2008). The Algorithm Design Manual. New York, USA: Springer.

Bibliografía

Referencias

- DevDocs. (2017). C Programming Language. 06/01/20, de cppreference.com Sitio web: https://devdocs.io/c/
- Python Software Foundation. (2017). Links a la documentación de Python. 06/01/20, de Python Software Foundation. Sitio web:

http://docs.python.org.ar/tutorial/3/reference.htmls

Contacto

Ubicación: Q2-21 (2do piso del edificio Valdez Vallejo)

Correo electrónico: jorge.a.solano@hotmail.com

Twitter: @jrg_sln

Página del curso: http://profesores.fi-b.unam.mx/george

¡Bienvenidos!