LABORATORIO DE DISEÑO DIGITAL MODERNO

Descripción funcional de una tabla de verdad

Práctica 2 Profesora: M.I. Norma Elva Chávez Rodríguez.

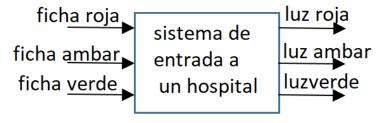
OBJETIVO:

El alumno aprenderá el código requerido en lenguaje VHDL para implementar una tabla de verdad.

INTRODUCCIÓN:

Hay dos maneras de representar una tabla de verdad en lenguaje VHDL, un método es usar la instrucción simultánea **with** – bus de entrada – **select** y otro está usando la instrucción secuencial process-case-when.

ESPECIFICACIONES:


En un hospital, en su sala de urgencias, se requiere tener un control de entradas. Se tiene tres tipos de pacientes; los que llegan por una súper-emergencia, los que llegan por una emergencia y los que van a chequeo.

Antes de entrar una enfermera valorando los síntomas y motivos de cada paciente les entregará una ficha; roja para los pacientes con una súper emergencia (S), ámbar para los pacientes con una emergencia (E) y verde para los pacientes que van a chequeo (C).

Se requiere diseñar un sistema de prioridad, el cual muestre a los pacientes cuando ellos pueden entrar.

De forma tal que cuando lleguen pacientes con fichas rojas; sin importar si al mismo tiempo llegan pacientes con otros colores de fichas, se prenderá el led rojo. Cuando no exista a la entrada un paciente con la ficha roja, la prioridad es para los pacientes con ficha amarilla, por lo que el led amarillo deberá encenderse a su llegada y finalmente si no existen pacientes con fichas rojas ni amarillas entrarán todos los pacientes con fichas verdes.

DIAGRAMA DE BLOQUES:

LABORATORIO DE DISEÑO DIGITAL MODERNO

Descripción funcional de una tabla de verdad

Práctica 2 Profesora: M.I. Norma Elva Chávez Rodríguez.

TABLA DE VERDAD:

Ficha	Ficha	Ficha	Luz	Luz	Luz
roja	amarilla	verde	Roja	Amarilla	Verde
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	0	0
1	1	0	1	0	0
1	1	1	1	0	0

El manejo de la tabla de verdad se asocia a un vector de entrada de tres bits A [2:0] en el cual se asigna al paciente de una súper-emergencia el valor A2, al paciente con una emergencia el valor A1 y al paciente que llegue tan solo a chequeo el valor A0, y las luces de salida también se asocian a otro vector L [2:0], en el cual se asigna a la luz roja el valor L2, a la luz amarilla el valor L1 y a la luz verde el valor L0. Por lo que la tabla de verdad quedará de la siguiente manera:

0				
A[2:0]	L[2:0]			
000	000			
001	001			
010	010			
011	010			
100	100			
101	100			
110	100			
111	100			

LABORATORIO DE DISEÑO DIGITAL MODERNO

Descripción funcional de una tabla de verdad

Práctica 2 Profesora: M.I. Norma Elva Chávez Rodríguez.

El código en lenguaje VHDL es:

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity CONTROLENTRADA is
 Port ( A: in STD_LOGIC_VECTOR (2 downto 0);
     L: out STD_LOGIC_VECTOR (6 downto 0));
end CONTROLENTRADA;
architecture Behavioral of CONTROLENTRADA is
begin
  with A select
 L \le "000" \text{ when } "000",
        "001" when "001",
        "010" when "010",
        "010" when "011",
        "100" when "100",
        "100" when "101",
        "100"when "110",
        "100" when others;
 end Behavioral;
```